Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vậy thì tổng của : -1+(-2)+(-3)+.........+(-49) = -(1+2+3+..........+49) = -1225
Đặt A = ( 12 + 22 + 3^2 + ... + 492 ) - ( 1.2 + 2.3 + ....+ 49.50 )
Đặt S = 12 + 22 + 32 +...+ 492
S = (1.2 - 1) + (2.3 - 2) + (3.4 - 3) +...+ (49.50 - 49)
S = (1.2 + 2.3 + 3.4 +...+ 49.50) - (1 + 2 + 3 +...+ 49)
=> A = [(1.2 + 2.3 + 3.4 +...+ 49.50) - (1 + 2 + 3 +...+ 49)] - (1.2 + 2.3 +...+ 49.50)
A = [(1.2 + 2.3 + 3.4 +...+ 49.50) - (1.2 + 2.3 +...+ 49.50)] - (49 + 1)49 : 2 (công thức tính tổng)
A = 0 - 1225
A = -1225
Cho A=1/1.2 + 1/2.3 + + 1/ 3.4+...+1/49.50 ; B = 1.2+2.3+3.4+4.5+5.6+...+49.50
Tính 50 mủ 2 A – B/17
Phần chứng tỏ quy đồng lên rồi tính là ra
Còn phần tính S thì áp dụng tính chất vừa chứng tỏ để tách ra
Kết quả là 49/50
1.Tính
\(E=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(E=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(E=\frac{1}{1}-\frac{1}{50}\)
\(E=\frac{49}{50}\)
Câu 2 mình không biết, xin lỗi nha
\(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{49.50}\right)x=\frac{49}{50}\)
\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)x=\frac{49}{50}\)
\(\left(1-\frac{1}{50}\right)x=\frac{49}{50}\)
\(\frac{49}{50}x=\frac{49}{50}\)
\(x=\frac{\frac{49}{50}}{\frac{49}{50}}\)
\(x=1\)
Vậy \(x=1\)