K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

viết lại đề cho rõ phân số đi bn

\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{2015}\left(1+2+3+...+2015\right)\)

\(=1+\frac{1}{2}.2.3:2+\frac{1}{3}.3.4:2+...+\frac{1}{2015}.2015.2016:2\)

\(=1+\frac{3}{2}+\frac{4}{2}+...+\frac{2016}{2}=\frac{2+3+4+...+2016}{2}=\frac{2033135}{2}\)

9 tháng 7 2018

C = 1+1/2(1+2)+1/3(1+2+3)+........+1/2015(1+2+3+4+...+2015) 

C = 1 + \(\frac{1}{2}\cdot\frac{2.3}{2}\)\(\frac{1}{3}\cdot\frac{3.4}{2}\)+ ... + \(\frac{1}{2015}\cdot\frac{2015.2016}{2}\)

C = \(\frac{2}{2}\) + \(\frac{3}{2}+\frac{4}{2}+...+\frac{2016}{2}\)

C = \(\frac{2+3+4+...+2016}{2}\)

Đặt D = 2 + 3 + 4 + ... + 2016 

Số số hạng của D là : (2016 - 2) : 1 + 1 = 2015

Tổng D là :  (2 + 2016) . 2015 : 2 = 2033135

Thay D vào biểu thức C ta được : \(\frac{2033135}{2}\)

Vậy C = ... . 

7 tháng 4 2016

=2015/2016