Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xin lỗi nhé mình mới học lớp 6 ko biết hnhieeuf về bài lớp 7 lên mình chỉ làm được mỗi câu a thôi, nhớ tích cho mk nhé
a)
A= \(5^2+10^2+15^2+...+2015^2\)
\(A=\left(5.1\right)^2+\left(5.2\right)^2+\left(5.3\right)^2+...+\left(5.403\right)^2\)
\(A=5^2.1^2+5^2.2^2+5^2.3^2+...+5^2.403^2\)
\(A=5^2.\left(1^2+2^2+3^2+...+403^2\right)\)
\(A=25.\left[1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+403.\left(404-1\right)\right]\)
\(A=25.\left[\left(1.2+2.3+3.4+...+403.404\right)-\left(1+2+3+...+403\right)\right]\)
Gọi :\(B=1.2+2.3+3.4+...+403.404\)
\(3B=1.2.3+2.3.3+3.4.3+...+403.404.3\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+403.404.\left(405-402\right)\)
\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+403.404.405-402.403.404\)
\(=403.404.405\)
\(=65938860\)
Gọi \(C=1+2+3+...+403\) (403 số hạng)
\(=\frac{\left(403+1\right).403}{2}\)
\(=\frac{162812}{2}\)
\(=81406\)
Suy ra \(A=25.\left(B-C\right)\)
\(=25.\left(65938860-81406\right)\)
\(=25.65857454\)
\(=1646436350\)
A = 1 + 10 + 102 + ... + 10100
10A - A = ( 10 + 102+ 103 + ... + 10101) - ( 1 + 10 + 102+ ... + 10100 )
9A = 10101 - 1
=> A = 10101 - 1/9
\(A=1+10+10^2+10^3+......+10^{100}\)
\(10A=10+10^2+10^3+.....+10^{101}\)
\(10-A=10^{101}-1\)
\(9A=10^{101}-1=>A=\frac{10^{101}-1}{9}\)
a.
\(A=1+3+3^2+3^3+...+3^n\)
\(3A=3+3^2+3^3+3^4+...+3^{n+1}\)
\(3A-A=\left(3+3^2+3^3+3^4+...+3^{n+1}\right)-\left(1+3+3^2+3^3+...+3^n\right)\)
\(2A=3^{n+1}-1\)
\(A=\frac{3^{n+1}-1}{2}\)
b.
\(B=\frac{1}{10}+\frac{1}{10^2}+\frac{1}{10^3}+...+\frac{1}{10^{99}}+\frac{1}{10^{100}}\)
\(10B=10+\frac{1}{10}+\frac{1}{10^2}+...+\frac{1}{10^{98}}+\frac{1}{10^{99}}\)
\(10B-B=\left(\frac{1}{10}+\frac{1}{10^2}+\frac{1}{10^3}+...+\frac{1}{10^{99}}+\frac{1}{10^{100}}\right)-\left(10+\frac{1}{10}+\frac{1}{10^2}+\frac{1}{10^{98}}+\frac{1}{10^{99}}\right)\)
\(9B=\frac{1}{10^{100}}-10\)
\(B=\frac{\frac{1}{10^{100}}-10}{9}\)
Sorry đăng làm giwor thì em nó bấm nộp bài mk làm tiếp nhé
\(E=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+......+\frac{1}{1+2+3+.....+24}\)
\(=\frac{1}{\frac{\left(2-1\right).2}{2}}+\frac{1}{\frac{\left(3-1\right).3}{2}}+.....+\frac{1}{\frac{\left(24-1\right).24}{2}}\)
\(=\frac{1}{\frac{1.2}{2}}+\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+.....+\frac{1}{\frac{23.24}{2}}\)
\(=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+.....+\frac{2}{23.24}\)
\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{23.24}\right)\)
\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{23}-\frac{1}{24}\right)\)
\(=2\left(1-\frac{1}{24}\right)\)
\(=2.\frac{23}{24}=\frac{23}{12}\)
Vậy tỉ số giữa D và E là ; \(\frac{5}{28}:\frac{23}{2}=\frac{5}{322}\)
Ta có : \(D=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+.....+\frac{10}{1400}\)
\(=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+.....+\frac{5}{25.28}\)
\(=\frac{5}{3}.\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+.....+\frac{3}{25.28}\right)\)
\(=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{25}-\frac{1}{28}\right)\)
\(=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{7}\right)\)
\(=\frac{5}{3}.\frac{3}{28}=\frac{5}{28}\)
đặt A=1+10+10^2+10^3+..+10^10
10A=10+10^2+10^3+10^4+...+10^11
10A-A=10+10^2+10^3+10^4+...+10^11-1-10-10^2-10^3-...-10^10
9A=10^11-1
A=(10^11-1):9
ĐS: 11111111111
( 11 chữ số 1)