Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) = -3/7 . 5/11 + -3/7 . 6/11 + 9/7
= -3/7. ( 5/11 + 6/11 ) + 9/7
= -3/7. 1 + 9/7
= -3/7 + 9/7
= 6/7
b) = 4/13 + 9/13 + -11/5 + 6/5 - 3/4
= 13/13 + -5/5 - 3/4
= 1 + (-1) - 3/4
= 0 - 3/4
= -3/4
c) = -19/17. 4/7 + 19/17. -3/7 + 19/17
= 19/17. -4/7 + 19/17. -3/7 + 19/17.1
= 19/17.( -4/7 + -3/7 + 19/17
= 19/17. -7/7 + 19/17
= 19/17. (-1) + 19/17
= -19/17 + 19/17
= 0
tk mk nha,thanks
\(2\frac{2}{3}:\left\{\left[\left(3,72-0,02.x\right)\frac{10}{37}\right]:\frac{5}{6}+2,8\right\}-\frac{7}{15}=0,2\)
\(2\frac{2}{3}:\left\{\left[\left(3,75-0,02.x\right)\frac{10}{37}\right]:\frac{5}{6}+2,8\right\}=\frac{2}{3}\)
\(\left\{\left[\left(3,72-0,02.x\right)\frac{10}{37}\right]:\frac{5}{6}+2,8\right\}=4\)
\(\left[\left(3,72-0,02.x\right)\frac{10}{37}\right]:\frac{5}{6}=\frac{6}{5}\)
\(\left[\left(3,72-0,02.x\right)\frac{10}{37}\right]=1\)
\(\left(3,72-0,02.x\right)=\frac{37}{10}\)
\(0,02.x=0,02\)
\(x=1\)
\(2\frac{2}{3}:\left\{\left[\left(3,72-0,02.x\right)\frac{10}{37}\right]:\frac{5}{6}+2,8\right\}-\frac{7}{15}=0,2\)
\(\Rightarrow\frac{8}{3}:\left\{\left[\left(\frac{93}{25}-\frac{1}{50}.x\right)\frac{10}{37}\right]:\frac{5}{6}+\frac{14}{5}\right\}-\frac{7}{15}=\frac{1}{5}\)
\(\Rightarrow\left\{\left[\frac{93}{25}-\frac{1}{50}.x\right]:\frac{5}{6}+\frac{14}{5}\right\}-\frac{7}{15}=\frac{8}{3}:\frac{1}{5}=\frac{40}{3}\)
\(\Rightarrow\left[\frac{93}{25}-\frac{1}{50}.x\right]:\frac{5}{6}+\frac{14}{5}=\frac{40}{3}+\frac{7}{15}=\frac{69}{5}\)
\(\Rightarrow\left[\frac{93}{25}-\frac{1}{50}.x\right]:\frac{5}{6}=\frac{69}{5}-\frac{14}{5}=11\)
\(\Rightarrow\frac{93}{25}-\frac{1}{50}.x=11.\frac{5}{6}=\frac{55}{6}\)
\(\Rightarrow\frac{1}{50}.x=\frac{93}{25}-\frac{55}{6}=\frac{-817}{150}\)
\(\Rightarrow x=\frac{-817}{150}:\frac{1}{50}=\frac{-817}{3}\)
Ủng hộ tớ nha m.n?
a) \(5\frac{8}{17}:x+\frac{-1}{17}:x+3\frac{1}{17}:17\frac{1}{3}=\frac{4}{17}\)
\(\frac{93}{17}:x+\frac{-1}{17}:x+\frac{52}{17}:\frac{52}{3}=\frac{4}{17}\)
\(\left(\frac{93}{17}+\frac{-1}{17}\right):x+\frac{52}{17}.\frac{3}{52}=\frac{4}{17}\)
\(\frac{92}{17}:x+\frac{3}{17}=\frac{4}{17}\)
\(\frac{92}{17}:x=\frac{4}{17}-\frac{3}{17}\)
\(\frac{92}{17}:x=\frac{1}{17}\)
\(x=\frac{92}{17}:\frac{1}{17}\)
\(x=92\)
b) \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x.\left(x+3\right)}=\frac{6}{19}\)
\(\frac{1}{3}.\left(1-\frac{1}{4}\right)+\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{7}\right)+\frac{1}{3}.\left(\frac{1}{7}-\frac{1}{10}\right)+...+\frac{1}{3}.\left(\frac{1}{x}-\frac{1}{x+3}\right)=\frac{6}{19}\)
\(\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{6}{19}\)
\(\frac{1}{3}.\left(1-\frac{1}{x+3}\right)=\frac{6}{19}\)
\(1-\frac{1}{x+3}=\frac{6}{19}:\frac{1}{3}\)
\(1-\frac{1}{x+3}=\frac{18}{19}\)
\(\frac{1}{x+3}=1-\frac{18}{19}\)
\(\frac{1}{x+3}=\frac{1}{19}\)
\(\Rightarrow x+3=19\)
\(\Rightarrow x=19-3\)
\(\Rightarrow x=16\)
Để nhân các phân số này, ta chỉ cần nhân tử số với nhau và mẫu số với nhau:
\[
\frac{1}{3} \times \frac{2}{5} \times \frac{3}{7} \times \frac{4}{9} \times \frac{5}{11} \times \frac{6}{15} \times \frac{7}{15} \times \frac{8}{15} \times \frac{9}{19} \times \frac{10}{21} \times \frac{11}{32} \times \frac{12}{25} \times \left( \frac{126}{252} - 4 \right)
\]
Sau đó, ta thực hiện các phép tính:
1. Nhân tử số:
\[1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10 \times 11 \times 12 \times 126 = 997920\]
2. Nhân mẫu số:
\[3 \times 5 \times 7 \times 9 \times 11 \times 15 \times 15 \times 15 \times 19 \times 21 \times 32 \times 25 \times 252 = 7621237680\]
Kết quả là:
\[\frac{997920}{7621237680}\]
Bây giờ, ta có thể rút gọn phân số này bằng cách chia tử số và mẫu số cho 160:
\[ \frac{997920}{7621237680} = \frac{997920 ÷ 160}{7621237680 ÷ 160} = \frac{6237}{47695230} \]
a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\)
\(=\frac{1}{2}-\frac{1}{3n+2}=\frac{3n+2}{2\cdot\left(3n+2\right)}-\frac{2}{2\cdot\left(3n+2\right)}\)
\(=\frac{3n+2-2}{6n+4}=\frac{3n}{6n+4}=VP\)
1) ( \(\frac{55}{3}\): 15 + \(\frac{26}{3}\) . \(\frac{7}{2}\)) : [(\(\frac{37}{3}\) + \(\frac{62}{7}\)) . \(\frac{7}{18}\)] : \(\frac{-1704}{445}\)
= ( \(\frac{55}{3}\). \(\frac{1}{15}\) + \(\frac{91}{3}\)) : [ \(\frac{445}{21}\) . \(\frac{7}{18}\)] . \(\frac{-445}{1704}\)
= ( \(\frac{11}{9}\)+ \(\frac{91}{3}\)) : \(\frac{445}{54}\). \(\frac{-445}{1704}\) = \(\frac{284}{9}\). \(\frac{54}{445}\). \(\frac{-445}{1704}\)= \(\frac{284}{9}\). (\(\frac{54}{445}\). \(\frac{-445}{1704}\))
= \(\frac{284}{8}\). \(\frac{-9}{284}\)
= \(\frac{-9}{8}\)