Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=12-22+.....-20162
=> -A=22-12+42-32+62-52...+20162-20152
-A=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)...+(2016-2015)(2016+2015)
-A=3+7+11+...+4031
-A=[(4031-3):4+1]:2 x (3+4031)
-A=2033136
A=-2033136
trả lời cho
-2033136
tui k chắc đâu nha .Nếu đúng tik đó
\(A=5^2+10^2+15^2+...+2015^2\\ \Rightarrow A=5^2\left(1^2+2^2+3^2+...+403^2\right)\)
\(B=1^2+...+403^3\\ =1\left(2-1\right)+2\left(3-1\right)+...+403\left(404-1\right)\\ =1.2-1+2.3-2+...+403.404-403\\ =\left(1.2+2.3+3.4+...+403.404\right)-\left(1+2+...+403\right)\)
\(C=1.2+2.3+3.4+...+403.404\\ \Rightarrow3.C=1.2.3+2.3.\left(4-1\right)+3.4\left(5-2\right)+...+403.404\left(405-402\right)\\ =1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+403.404.405-402.403.404\\ =403.404.405\\ \Rightarrow3.C=65938860\\ \Rightarrow C=21979260\)
\(D=1+2+...+403\\ =\dfrac{\left(403+1\right).403}{2}=81406\)
\(\Rightarrow A=25.B=25.\left(C-D\right)=25.\left(21979260-81406\right)\\ =25.21897854=547446350\)
\(\left(1^2-2^2\right)+\left(3^2-4^2\right)+...+\left(2015^2-2016^2\right)\\ =\left(1-2\right)\left(1+2\right)+\left(3-4\right)\left(3+4\right)+...+\left(2015-2016\right)\left(2015+2016\right)\\ =-1-2-3-4-....-2015-2016\\ =-\left(1+..+2016\right)\\ =-\dfrac{\left(2016+1\right).2016}{2}=--2033136\)
1) 3F=3+32+33+34+...+32016
3F-F=(3+32+33+34+...+32016)-( 1+3+32+33+...+32015)
2F=32016-1
F= 32016-1/2...
2)
1/2.3 +1/3.4+...+1/2016.2017 < 1/2^2+1/3^2+...+1/2016^2
1/2 -1/3+1/3 -1/4+...+1/2016-1/2017 < 1/2^2+1/3^2+...+1/2016^2
1/2-1/2017 < 1/2^2+1/3^2+...+1/2016^2
=> 2015/4034 < 1/2^2+1/3^2+...+1/2016^2
tương tự
1/2^2+1/3^2+...+1/2016^2 < 1/1.2 +1/2.3+...+1/2015.2016
1/2^2+1/3^2+...+1/2016^2 < 1- 1/2+1/2 -1/3+...+1/2015- 1/2016
1/2^2+1/3^2+...+1/2016^2 < 1-1/2016
1/2^2+1/3^2+...+1/2016^2 < 2015/2016
tích nha
\(\left(\frac{1}{2^2}-1\right)\cdot\left(\frac{1}{3^2}-1\right)\cdot..\cdot\left(\frac{1}{10^2}-1\right)\)
\(=\left(\frac{1}{2}\cdot\frac{1}{2}-1\right)\cdot\left(\frac{1}{3}\cdot\frac{1}{3}-1\right)\cdot...\cdot\left(\frac{1}{10}\cdot\frac{1}{10}-1\right)\)
\(=\left(\frac{1}{4}-1\right)\cdot\left(\frac{1}{9}-1\right)\cdot...\cdot\left(\frac{1}{100}-1\right)\)
\(=\frac{-3}{4}\cdot\frac{-8}{9}\cdot...\cdot\frac{-99}{100}\)
\(=\frac{\left(-1\right).\left(-3\right)}{2.2}\cdot\frac{\left(-2\right).\left(-4\right)}{3.3}\cdot...\cdot\frac{\left(-9\right).\left(-11\right)}{10.10}\)
\(=\frac{\left(-1\right).\left(-2\right)....\left(-9\right)}{2.3....10}\cdot\frac{\left(-3\right).\left(-4\right)....\left(-11\right)}{2.3.....10}\)
\(=\frac{-1}{10}\cdot\frac{-11}{2}=\frac{-11}{20}\)
A = 1 + 2 + 22 + 23 + ...... + 22015
2A = 2 + 22 + 23 + ......... + 22016
2A - A = (2 + 22 + 23 + ...... + 22016) - (1 + 2 + 22 + ........ + 22015)
A = 22016 - 1
B = 22016
B - A = 22016 - (22016 - 1)
B - A = 22016 - 22016 + 1
B - A = 1
mình chỉ biết = 1
đầu tiên lấy 2^2016 - 2^2015 = 2^2015 x 2 - 2^2015 = 2^2015
rồi cứ lấy như thế làm mãi đến 2^2 - 2 = 2 x 2 - 2 = 2 rồi 2 - 1 = 1
=> B - A = 1
đặt \(A=1-2+2^2-2^3+...+2^{2014}-2^{2015}+2^{2016}\)
\(\Rightarrow2A=2\left(1-2+2^2-2^3+...-2^{2015}+2^{2016}\right)\)
\(\Rightarrow2A=2-2^2+2^3-2^4+...-2^{2016}+2^{2017}\)
\(\Rightarrow2A+A=1+2^{2017}\)
\(\Rightarrow A=\frac{1+2^{2017}}{3}\)