Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = \(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-\)...\(-\frac{1}{1024}\)
A= \(\frac{1}{2^1}-\frac{1}{2^2}-\frac{1}{2^3}-\frac{1}{2^4}-\)....\(-\frac{1}{2^{10}}\)
2A=\(\frac{1}{1}\)\(-\frac{1}{2^1}-\frac{1}{2^2}-\frac{1}{2^3}-\)...\(-\frac{1}{2^9}\)
2A-A=(\(\frac{1}{1}\)\(-\frac{1}{2^1}-\frac{1}{2^2}-\frac{1}{2^3}-\)...\(-\frac{1}{2^{10}}\)) \(-\)(\(\frac{1}{2^1}-\frac{1}{2^2}-\frac{1}{2^3}-\frac{1}{2^4}-\)..\(-\frac{1}{2^9}\))
A=\(1+\frac{1}{2^{10}}\)
A= \(\frac{1025}{1024}\)
A/5+10+15+...+1500
=5+10+15+...+1500 ta có:1500-5:5+1=300(số hạng)
=(5+1500)x300:2=225750
\(A=-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-...-\frac{1}{1024}\)
\(A=-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
\(A=-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
\(2A=-\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
\(2A-A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}-2-1-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^9}\)
\(A=-2+\frac{1}{2^{10}}\)
Ta có: -1 - 1/2 - 1/4 - 1/8 - ... -1/1024
= -1 - (1 - 1/2) - (1/2 - 1/4) - .... - (1/512 - 1/1024)
= -1 - (1 - 1/1024)
= -1 - 1023/1024
= -2047/1024
Đặt \(A=-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{512}-\frac{1}{1024}\)
\(\Rightarrow2A=-2-1-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{512}\)
\(\Rightarrow2A-A=-2+\frac{1}{1024}\)
\(A=-2+\frac{1}{1024}\)
= -1-1+1/2-1/2+1/4-1/4+1/8-...+1/512-1/1024
=-1-1-1/1024
=-2\(\dfrac{1}{1024}\)
\(A=-1-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{8}-....-\dfrac{1}{1024}\)
\(A=-1-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\right)\)
Đặt:
\(B=\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)
\(2B=2\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\right)\)
\(2B=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)
\(2B-B=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\right)\)
\(B=1-\dfrac{1}{2^{10}}\)
Thay vào \(A\)
\(A=-1-\left(1-\dfrac{1}{2^{10}}\right)\)
\(A=-1-1+\dfrac{1}{2^{10}}\)
\(A=-2+\dfrac{1}{2^{10}}\)