Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P=[(1-2)+(-3+4)+(5-6)+(-7+8)+...+(993-994)+(-995+996)]+997
P=[(-1)+1+(-1)+1+...+(-1)+1+(-1)+1]+997
P= 0 +0 +...+ 0 +997
P=997
A>1√2+√3+1√4+√5+1√6+√7+...+1√2024+√2025A>12+3+14+5+16+7+...+12024+2025
⇒2A>1√1+√2+1√2+√3+1√3+√4+1√4+√5+...+1√2024+√2025⇒2A>11+2+12+3+13+4+14+5+...+12024+2025
⇒2A>√2−√1+√3−√2+√4−√3+...+√2025−√2024⇒2A>2−1+3−2+4−3+...+2025−2024
⇒2A>√2025−√1=44⇒2A>2025−1=44
⇒A>22⇒A>22
A=(1+1+....+1)-(1/2 +1/4 +...+1/1024)
A=10-(1/2+ 1/4+...+1/1024)
ta có B=1/2+1/4+..1/1024
2B=1+1/2+....+1/512
2B-B=(1+1/2+...+1/512)-(1/2+1/4+...+1/1024)
B=1-1/1024=1023/1024
A=10-1023/1024=9217/1024
A = \(\dfrac{1}{1+2+3}\)+\(\dfrac{1}{1+2+3+4}\)+...+ \(\dfrac{1}{1+2+...+2004}\)+ \(\dfrac{2}{2025}\)
A = \(\dfrac{1}{\left(1+3\right).3:2}\)+\(\dfrac{1}{\left(4+1\right).4:2}\)+...+ \(\dfrac{1}{\left(2024+1\right).2024:2}\)+\(\dfrac{2}{2025}\)
A = \(\dfrac{2}{3.4}\)+\(\dfrac{2}{4.5}\)+...+\(\dfrac{2}{2024.2025}\)+ \(\dfrac{2}{2025}\)
A = 2.(\(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\)+...+ \(\dfrac{1}{2024.2025}\)) + \(\dfrac{2}{2025}\)
A = 2.(\(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\)+...+ \(\dfrac{1}{2024}\) - \(\dfrac{1}{2025}\)) + \(\dfrac{2}{2025}\)
A = 2.(\(\dfrac{1}{3}\) - \(\dfrac{1}{2025}\)) + \(\dfrac{2}{2025}\)
A = \(\dfrac{2}{3}\) - \(\dfrac{2}{2025}\) + \(\dfrac{2}{2025}\)
A = \(\dfrac{2}{3}\)
a:
Sửa đề: \(S=1-3+5-7+...+2021-2023+2025\)
Từ 1 đến 2025 sẽ có:
\(\dfrac{2025-1}{2}+1=\dfrac{2024}{2}+1=1013\left(số\right)\)
Ta có: 1-3=5-7=...=2021-2023=-2
=>Sẽ có \(\dfrac{1013-1}{2}=\dfrac{1012}{2}=506\) cặp có tổng là -2 trong dãy số này
=>\(S=506\cdot\left(-2\right)+2025=2025-1012=1013\)
b: \(S=1+2-3-4+5+6-7-8+...+2021+2022-2023-2024\)
Từ 1 đến 2024 là: \(\dfrac{\left(2024-1\right)}{1}+1=2024\left(số\right)\)
Ta có: 1+2-3-4=5+6-7-8=...=2021+2022-2023-2024=-4
=>Sẽ có \(\dfrac{2024}{4}=506\) cặp có tổng là -4 trong dãy số này
=>\(S=506\cdot\left(-4\right)=-2024\)
sai đề ko bạn ?