Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(=-\frac{1}{2187}.2187\)
\(=-1\)
b)
\(=\frac{1}{512}.512\)
\(=1\)
c)
\(=\frac{8100}{225}=36\)
d) \(=10000\)
\(16:\left(0,125\right)^3.512\)
\(=16:\dfrac{1}{512}.512\)
\(=16:\left(\dfrac{1}{512}.512\right)\)
\(=16:1\)
\(=16\)
a) \(\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{47}\right)^6=\left(\frac{3}{7}\right)^{21}:\left[\left(\frac{3}{7}\right)^2\right]^6=\left(\frac{3}{7}\right)^{21}:\left(\frac{3}{7}\right)^{12}=\left(\frac{3}{7}\right)^{21-12}=\left(\frac{3}{7}\right)^9\)
b) \(\frac{390}{130}^4=3^4=81\)
c) \(\left(0,125\right)^3.512=\frac{1}{512}.512=1\)
\(\left(\dfrac{1}{7}\right)^7\cdot7^7=\left(\dfrac{1}{7}\cdot7\right)^7=1^7=1\\ \left(0,125\right)^3\cdot512=\left(0,125\right)^3\cdot8^3=\left(0,125\cdot8\right)^3=1^3=1\\ \left(0,25\right)^4\cdot1024=\left(0,25\right)^4\cdot256\cdot4=\left(0,25\right)^4\cdot4^4\cdot4=\left(0,25\cdot4\right)^4\cdot4=1^4\cdot4=4\)
a) \(\left(\dfrac{1}{7}\right)^7.7^7=\left(\dfrac{1}{7}.7\right)^7=1^7=1\)
b) \(\left(0.125\right)^3.512=\left(0.125\right)^3.8^3=\left(0.125\cdot8\right)^3=1^3=1\)
c) \(\left(0.25\right)^4.1024=\left(0.25\right)^4.4^5=\left(0.25\right)^4.4^4.4=\left(0.25.4\right)^4.4=1^4.4=1.4=4\)
Bài 1:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2+5}=\dfrac{-7}{7}=-1\)
Do đó: x=-2; y=5
Bài 2:
Ta có: \(\left(-\dfrac{1}{3}\right)^3\cdot x=\dfrac{1}{81}\)
\(\Leftrightarrow x=\dfrac{1}{81}:\dfrac{-1}{27}=\dfrac{-1}{3}\)
512-\(\frac{512}{2}\)-\(\frac{512}{2^2}\)-\(\frac{512}{2^3}\)-....-\(\frac{512}{2^{10}}\)
=512-256-\(\frac{2^9}{2^2}\)-\(\frac{2^9}{2^3}\)-\(\frac{2^9}{2^4}\)-\(\frac{2^9}{2^5}\)-\(\frac{2^9}{2^6}\)-\(\frac{2^9}{2^7}\)-\(\frac{2^9}{2^8}\)-\(\frac{2^9}{2^9}\)-\(\frac{2^9}{2^{10}}\)
=512-256-128-64-32-16-8-4-2-\(\frac{1}{2}\)
=\(\frac{3}{2}\)
Đặt \(Q=512-\frac{512}{2}-\frac{512}{2^2}-...-\frac{512}{2^{10}}\)
\(=512-512\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
Đặt A là tên biểu thức trong ngoặc ta cs:
\(2A=1+\frac{1}{2}+...+\frac{1}{2^9}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
\(A=1-\frac{1}{2^{10}}\)
Thay A vào Q ta được:
\(Q=512-512\left(1-\frac{1}{2^{10}}\right)=512-512+\frac{512}{2^{10}}=\frac{2^9}{2^{10}}=\frac{1}{2}\)
\(\Rightarrow\frac{M}{512}=1-\frac{1}{2}-\frac{1}{2^2}-.....-\frac{1}{2^{10}}\)
\(\Rightarrow2.\left(\frac{M}{512}\right)=2-1-\frac{1}{2}-.....-\frac{1}{2^9}\)
\(\Rightarrow2.\left(\frac{M}{512}\right)-\frac{M}{512}=\left(2-1-\frac{1}{2}-.....-\frac{1}{2^9}\right)-\left(1-\frac{1}{2}-\frac{1}{2^2}-.....-\frac{1}{2^{10}}\right)\)
\(\Rightarrow\frac{M}{512}=-\frac{1}{2^{10}}\)
\(\Rightarrow M=-\frac{1}{2}\)
A) (1/5)^5 . 5^5 = 1/5^5 . 5^5 = 5^5 / 5^5 = 1.
B)(0,125)^3 . 512 = (1/8)^3 . 512 = 1/8^3 . 512 = 1/512 . 512 = 1.
C) (0,25)^4 . 1024 = (1/4)^4 . 1024 = 1/4^4 . 1024 = 1/256 . 1024 = 4.
(0,125)3.512 = 0,1253.83 = (0,125.8)3 = 13 = 1