Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
9.
\(5^{2x}-3.5^{x+2}+32< 0\)
\(\Leftrightarrow\left(5^x\right)^2-75.5^x+32=0\)
Đặt \(5^x=t\Rightarrow t^2-75t+32< 0\)
10.
\(\overrightarrow{BA}=\left(4;-1;7\right)\Rightarrow\) đường thẳng AB nhận \(\left(4;-1;7\right)\) là 1 vtcp
Đáp án C là đáp án duy nhất đúng về vtcp, nhưng lại sai về điểm mà đường thẳng đi qua, nên cả 4 đáp án đều sai :)
Pt chính tắc đúng phải là: \(\frac{x+3}{4}=\frac{y}{-1}=\frac{z+4}{7}\)
11.
\(\overrightarrow{a}\perp\overrightarrow{b}\Leftrightarrow\overrightarrow{a}.\overrightarrow{b}=0\)
\(\Leftrightarrow2+m-3=0\Rightarrow m=1\)
5.
\(R=a;h=2a\)
\(\Rightarrow S=2\pi R.h=4\pi a^2\)
6.
\(\left(x+y\right)+\left(2x-y\right)i=3-6i\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=3\\2x-y=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\)
7.
\(R=d\left(I;\left(P\right)\right)=\frac{\left|2.1+2.2+4-1\right|}{\sqrt{2^2+2^2+1^2}}=3\)
Pt mặt cầu: \(\left(x-1\right)^2+\left(y-2\right)^2+\left(z-4\right)^2=9\)
8.
\(x^4-3x^2-5=0\)
Đặt \(x^2=t\ge0\Leftrightarrow t^2-3t-5=0\) (1)
\(t_1t_2=-5< 0\Rightarrow\left(1\right)\) có 2 nghiệm trái dấu => có đúng 1 nghiệm dương => pt đã cho có 2 nghiệm pb
\(\Rightarrow\) Đồ thị hs cắt trục hoành tại 2 điểm
\(\left(z^2+1+3z-2\right)^2+\left(2z-3\right)^2=0\\ \Leftrightarrow\left(z^2+1\right)^2+2\left(z^2+1\right)\left(3z-2\right)+\left(3z-2\right)^2+\left(2z-3\right)^2=0\\ \Leftrightarrow\left(z^2+1\right)^2+2\left(z^2+1\right)\left(3z-2\right)+\left[\left(3z-2\right)^2+\left(2z-3\right)^2\right]=0\\\Leftrightarrow\left(z^2+1\right)^2+2\left(z^2+1\right)\left(3z-2\right)+13\left(z^2+1\right)=0\Leftrightarrow\left(z^2+1\right)\left(z^2+6z+10\right)=0\)
Giải ra được:
\(\left[\begin{matrix}z=\pm i\\z=-3+i\\z=-3-i\end{matrix}\right.\)
Câu 1:
Để ý rằng \((2-\sqrt{3})(2+\sqrt{3})=1\) nên nếu đặt
\(\sqrt{2+\sqrt{3}}=a\Rightarrow \sqrt{2-\sqrt{3}}=\frac{1}{a}\)
PT đã cho tương đương với:
\(ma^x+\frac{1}{a^x}=4\)
\(\Leftrightarrow ma^{2x}-4a^x+1=0\) (*)
Để pt có hai nghiệm phân biệt \(x_1,x_2\) thì pt trên phải có dạng pt bậc 2, tức m khác 0
\(\Delta'=4-m>0\Leftrightarrow m< 4\)
Áp dụng hệ thức Viete, với $x_1,x_2$ là hai nghiệm của pt (*)
\(\left\{\begin{matrix} a^{x_1}+a^{x_2}=\frac{4}{m}\\ a^{x_1}.a^{x_2}=\frac{1}{m}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^{x_2}(a^{x_1-x_2}+1)=\frac{4}{m}\\ a^{x_1+x_2}=\frac{1}{m}(1)\end{matrix}\right.\)
Thay \(x_1-x_2=\log_{2+\sqrt{3}}3=\log_{a^2}3\) :
\(\Rightarrow a^{x_2}(a^{\log_{a^2}3}+1)=\frac{4}{m}\)
\(\Leftrightarrow a^{x_2}(\sqrt{3}+1)=\frac{4}{m}\Rightarrow a^{x_2}=\frac{4}{m(\sqrt{3}+1)}\) (2)
\(a^{x_1}=a^{\log_{a^2}3+x_2}=a^{x_2}.a^{\log_{a^2}3}=a^{x_2}.\sqrt{3}\)
\(\Rightarrow a^{x_1}=\frac{4\sqrt{3}}{m(\sqrt{3}+1)}\) (3)
Từ \((1),(2),(3)\Rightarrow \frac{4}{m(\sqrt{3}+1)}.\frac{4\sqrt{3}}{m(\sqrt{3}+1)}=\frac{1}{m}\)
\(\Leftrightarrow \frac{16\sqrt{3}}{m^2(\sqrt{3}+1)^2}=\frac{1}{m}\)
\(\Leftrightarrow m=\frac{16\sqrt{3}}{(\sqrt{3}+1)^2}=-24+16\sqrt{3}\) (thỏa mãn)
Câu 2:
Nếu \(1> x>0\)
\(2017^{x^3}>2017^0\Leftrightarrow 2017^{x^3}>1\)
\(0< x< 1\Rightarrow \frac{1}{x^5}>1\)
\(\Rightarrow 2017^{\frac{1}{x^5}}> 2017^1\Leftrightarrow 2017^{\frac{1}{x^5}}>2017\)
\(\Rightarrow 2017^{x^3}+2017^{\frac{1}{x^5}}> 1+2017=2018\) (đpcm)
Nếu \(x>1\)
\(2017^{x^3}> 2017^{1}\Leftrightarrow 2017^{x^3}>2017 \)
\(\frac{1}{x^5}>0\Rightarrow 2017^{\frac{1}{x^5}}>2017^0\Leftrightarrow 2017^{\frac{1}{5}}>1\)
\(\Rightarrow 2017^{x^3}+2017^{\frac{1}{x^5}}>2018\) (đpcm)