![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1/ (69.210+1210)+(219.273+15.49.94) = 29.39.210+310.220+219.39+5.3.218.38 = 219.39+310.220+219.39+5.218.39
= 218.39(2+3.22+5)=19.218.39
![](https://rs.olm.vn/images/avt/0.png?1311)
B=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2012}}\)
=>3B=\(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2011}}\)
=>3B-B=2B=1-\(\dfrac{1}{3^{2012}}\)
=>B=\(\dfrac{1}{2}-\dfrac{1}{2.3^{20112}}\)<1/2
vậy........
![](https://rs.olm.vn/images/avt/0.png?1311)
\(B=\frac{2001}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{2}{2010}+\frac{1}{2001}\)
\(B=\left(2011-1-...-1\right)+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)\)
\(B=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}\)
\(B=2012\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)
\(\Rightarrow\)\(\frac{B}{A}=\frac{2012\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}}=2012\)
Vậy \(\frac{B}{A}=2012\)
Chúc bạn học tốt ~
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
\(\frac{1}{2013}M=\frac{2013^{2012}+2012}{2013^{2012}+2013}=\frac{2013^{2012}+2013}{2013^{2012}+2013}-\frac{1}{2013^{2012}+2013}=1-\frac{1}{2013^{2012}+2013}\)
Lại có :
\(\frac{1}{2013}N=\frac{2013^{2011}+2012}{2013^{2011}+2013}=\frac{2013^{2011}+2013}{2013^{2011}+2013}-\frac{1}{2013^{2011}+2013}=1-\frac{1}{2013^{2011}+2013}\)
Vì \(\frac{1}{2013^{2012}+2013}< \frac{1}{2013^{2011}+2013}\) nên \(M=1-\frac{1}{2013^{2012}}>N=1-\frac{1}{2013^{2011}+2013}\)
Vậy \(M>N\)
Chúc bạn học tốt ~
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét \( A = 1 + \dfrac{{2014}}{2} + \dfrac{{2015}}{3} + ... + \dfrac{{4023}}{{2011}} + \dfrac{{4024}}{{2012}}\\ \)
\(\Rightarrow A - 2012 = \left( {\dfrac{{2014}}{2} - 1} \right) + \left( {\dfrac{{2015}}{3} - 1} \right) + ... + \left( {\dfrac{{4024}}{{2012}} - 1} \right)\\ \Rightarrow A - 2012 = \dfrac{{2012}}{2} + \dfrac{{2012}}{3} + ... + \dfrac{{2012}}{{2012}}\\ \Rightarrow A - 2012 = 2012\left( {\dfrac{1}{2} + \dfrac{1}{3} + ... + \dfrac{1}{{2012}}} \right)\\ \Rightarrow A = 2012\left( {1 + \dfrac{1}{2} + ... + \dfrac{1}{{2012}}} \right)\\ \Rightarrow \left( {1 + \dfrac{1}{2} + \dfrac{1}{3} + ... + \dfrac{1}{{2012}}} \right)503x = 2012\left( {1 + ... + \dfrac{1}{{2012}}} \right)\\ \Rightarrow x = \dfrac{{2012}}{{503}} = 4 \)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(B=2^{2012}+2^{2011}+...+2^3+2^2+2+1\)
\(\Rightarrow2B=2^{2013}+2^{2012}+...+2^4+2^3+2^2+2\)
\(\Rightarrow2B-B=\left(2^{2013}+2^{2012}+...+2^4+2^3+2^2+2\right)-\left(2^{2012}+...+1\right)\)
\(\Rightarrow B=2^{2013}-1\)
\(A=2^{2003}.9+2^{2003}.1005\)
\(\Rightarrow A=2^{2003}.\left(9+1005\right)\)
\(\Rightarrow A=2^{2003}.1024\)
\(\Rightarrow A=2^{2003}.2^{10}\)
\(\Rightarrow A=2^{2013}\)
Vì \(2^{2013}-1< 2^{2013}\) nên A > B
Vậy A > B
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=1+2+2^2+..........+2^{2011}\)
\(\Leftrightarrow2A=2+2^2+.............+2^{2011}+2^{2013}\)
\(\Leftrightarrow2A-A=\left(2+2^2+2^3+..........+2^{2012}\right)-\left(1+2+2^2+...........+2^{2011}\right)\)
\(\Leftrightarrow A=2^{2012}-1\)
Mà \(B=2^{2012}\)
\(\Leftrightarrow A;B\) là 2 số tự nhiên liên tiếp
A=1+2+2^2+...+2^2001
2A=2+2^2+....+2^2011+2^2013
2A-A=(2+2^2+....+2^2012)-(1+2+...+2^2011)
A=2^2011-1
Mà B=2^2012
\(\Rightarrow\)A,B là 2 số liên tiếp