Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xy - x + 2y = 3
x(y - 1) + 2y - 2 = 3 - 2
x(y - 1) + 2(y - 1) = 1
<=> (x + 2)(y - 1) = 1
=> (x + 2)(y - 1) = 1.1 = ( - 1)(- 1)
Nếu x + 2 = 1 thì y - 1 = 1 => x = - 1 thì y = 2
Nếu x + 2 = - 1 thì y - 1 = - 1 => x = - 3 thì y = 0
Vậy x = - 1 thì y = 2; x = - 3 thì y = 0
\(x\left(y-1\right)+2y-2=3-2=1\)
\(\left(y-1\right)\left(x+2\right)=1\)
y-1={-1,1)=> y={0,2}
x+2={-1,1}=>x={-3,-1}
[x - (-61)] - (-42) = 75
[x - (-61)] = 75 + (-42)
[x - (-61)] = 33
x - (-61) = 33
x = 33 + (-61)
x = -28
a) Giả sử 42 = a . b = b . a. Điều này có nghĩa là a và b là những ước của 42. Vì b = 42 : a nên chỉ cần tìm a. Nhưng a có thể là một ước bất kì của 42.
Nếu a = 1 thì b = 42.
Nếu a = 2 thì b = 21.
Nếu a = 3 thì b = 14.
Nếu a = 6 thì b = 7.
b) ĐS: a = 1, b = 30;
a = 2, b = 15;
a = 3, b = 10;
a = 5, b = 6.
Ta có: \(\frac{x}{2}-\frac{2}{y}=\frac{1}{2}\)
=> \(\frac{x}{2}-\frac{1}{2}=\frac{2}{y}\)
=> \(\frac{x-1}{2}=\frac{2}{y}\)
=> (x - 1).y = 2 . 2
=> (x - 1).y = 4 = 1 . 4 = 2. 2 = 4 . 1
Lập bảng :
x - 1 | 1 | 4 | -1 | -4 | 2 | -2 |
y | 4 | 1 | -4 | -1 | 2 | -2 |
x | 2 | 5 | 0 | -3 | 3 | -1 |
Vậy ...
a) Vì ƯCLN(a,b)=42 nên a=42.m và b=42.n với ƯCLN(m,n)=1
Mặt khác a+b=252 nên 42.m+42.n=252 hay m+n=6
Do m và n nguyên tố cùng nhau nên ta được như sau:
- Nếu m=1 thì a=42 và n=5 thì b=210
- Nếu m=5 thì a=210 và n=1 thì b=42
b) x+3 là ước của 12= {1;2;3;4;6} suy ra x={0;1;3}
c) Giả sử ƯCLN(2n+1; 6n+5)=d khi đó (2n+1) chia hết cho d và (6n+5) chia hết cho d
3(2n+1) chia hết cho d và (6n+5) chia hết cho d
(6n+5) - (6n+3) chia hết cho d syt ra 2 chia hết cho d suy ra d=1; d=2
Nhưng do 2n+1 là số lẻ nên d khác 2. vậy d=1 suy ra ƯCLN(2n+1; 6n+5)=1
Như vậy 2n+1 và 6n+5 là 2 nguyên tố cùng nhau với bất kỳ n thuộc N (đpcm)
a) 480 chia hết cho a , 600 chia hết cho a và a lớn nhất
=> a = ƯCLN(480, 600)
480 = 25 . 3 . 5
600 = 23 . 3 . 52
ƯCLN(480, 600) = 23 . 3 . 5 = 120
=> a = 120
b) 126 chia hết cho x , 210 chia hết cho x và 15 < x < 30
=> x thuộc ƯC(126, 210) và 15 < x < 30
126 = 2 . 32 . 7
210 = 2 . 3 . 5 . 7
ƯCLN(126, 210) = 2 . 3 . 7 = 42
ƯC(126,210) = Ư(42) = { 1 ; 2 ; 3 ; 6 ; 7 ; 14 ; 21 ; 42 }
Vì 15 < x < 30 => x = 21
c) 35 chia hết cho y , 105 chia hết cho y và y > 5
=> y thuộc ƯC(35, 105)
35 = 5 . 7
105 = 3 . 5 . 7
ƯCLN(35, 105) = 5 . 7 = 35
ƯC(35. 105) = Ư(35) = { 1 ; 5 ; 7 ; 35 ]
Vì y > 5 => y = 7 , y = 35