Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n = 1 ta thấy thảo mãn
Nếu \(n\ge2\)thì \(n^{1988}+n^{1987}+1>n^2+n+1\)
Mặt khác \(n^{1988}+n^{1987}+1=n^2\left(n^{1986}-1\right)+n\left(n^{1986}-1\right)+\left(n^2+n+1\right)\)
Nên \(n^2+n+1\)|\(n^{1988}+n^{1987}+1\)
Vậy \(n^{1988}+n^{1987}+1\)là hợp số
Cái này bạn phải chứng minh bổ đề phụ nhá
\(n=1\)ta thấy thõa mãn
Nếu \(n\ge2\)thì \(n^{1998}+n^{1987}+1>n^2+n+1\)
Măt khác : \(n^{1988}+n^{1987}+1=n^2\left(n^{1986}-1\right)+n\left(n^{1986}-1\right)+\left(n^2+n+1\right)\)
Nên \(n^2+n+1\)| \(n^{1988}+n^{1987}+1\)
Vậy \(n^{1988}+n^{1987}+1\) là hợp số
Mik có sửa lại cái đề mới nãy của bạn ( bạn xem lại đề bài bạn cho có đúng không nhé )
∙∙ n=1n=1 ta thấy thõa mãn
Nếu n≥2n≥2 thì n1998+n1987+1>n2+n+1n1998+n1987+1>n2+n+1
Mặt khác n1988+n1987+1=n2(n1986−1)+n(n1986−1)+(n2+n+1)n1988+n1987+1=n2(n1986−1)+n(n1986−1)+(n2+n+1)
Nên n2+n+1|n1988+n1987+1n2+n+1|n1988+n1987+1
Vậy n1988+n1987+1n1988+n1987+1 là hợp số
ủng hộ nhá
∙∙ n=1n=1 ta thấy thõa mãn
Nếu n≥2n≥2 thì n1998+n1987+1>n2+n+1n1998+n1987+1>n2+n+1
Mặt khác n1988+n1987+1=n2(n1986−1)+n(n1986−1)+(n2+n+1)n1988+n1987+1=n2(n1986−1)+n(n1986−1)+(n2+n+1)
Nên n2+n+1|n1988+n1987+1n2+n+1|n1988+n1987+1
Vậy n1988+n1987+1n1988+n1987+1 là hợp số
+) n=1 ta thấy thõa mãn
+) n≥2 thì n1998+n1987+1>n2+n+1
Mặt khác n1988+n1987+1=n2(n1986−1)+n(n1986−1)+(n2+n+1)
Nên n2+n+1|n1988+n1987+1
Vậy n1988+n1987+1 là hợp số
n = 1 ta thấy thỏa mãn
Nếu n > 2 Hoặc n = 2 thì :
n1998 + n1997 + 1 > n2 + n + 1
Mặt khác :
n1998 + n1997 + 1 = n2 . ( n1986 - 1 ) + n . ( n1986 - 1) + ( n2 + n + 1 )
Nên : n2 + n + 1/n1987 + 1
Vậy n1988 + n1987 + 1 là hợp số ( ĐPCM )
Chỗ nào ko hiểu cứ ib cho mik!
Ôi mik xin lỗi mik cứ tưởng là đề bài là chứng minh!
Xin lỗi bn nhiều!
Bn cứ chọn sai đi!
Đặt A=1+n2017+n2018
*Nếu: n=1 => A= 1 + 12017 + 12018 = 3 (t/m)
Do đó: A là số nguyên tố
*Nếu: n>1
1+n2017+n2018
=(n2018-n2)+(n2017-n)+(n2+n+1)
=n2.(n2016-1)+n.(n2016-1)+(n2+n).(n2016-1)+(n2+n+1)
Vì: n2016 chia hết cho n3
=> n2016-1 chia hết cho n3-1
=> n2016-1 chia hết cho (n2+n+1)
Mà: 1<n2+n+1<A=> A là số nguyên tố (k/tm đk đề bài số nguyên dương)
Vậy n=1
+) Với \(n=1\Rightarrow B=3\) là SNT
+) Với \(n>1\Rightarrow B>3\)
Ta có: \(B=\left(n^{1988}-n^2\right)+\left(n^{1987}-n\right)+\left(n^2+n+1\right)\)
Có \(n^{1986}-1=\left[\left(n^3\right)^{662}-1\right]⋮n^3-1\)
Mà \(n^3-1=\left(n-1\right)\left(n^2+n+1\right)\)
\(\Rightarrow n^{1986}-1⋮n^2+n+1\)
Mà \(\left\{{}\begin{matrix}n^{1988}-n^2⋮n^{1986}-1\\n^{1887}-n⋮n^{1986}-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}n^{1988}-n^2⋮n^2+n+1\\n^{1987}-n⋮n^2+n+1\end{matrix}\right.\)
\(\Rightarrow B⋮n^2+n+1\)
Mà \(n^2+n+1>3\forall n>1\)
=> B ko là SNT với n > 1
Vậy n = 1 (T/m)
ta thấy thõa mãn
+) n≥2 thì n1998+n1987+1>n2+n+1
Mặt khác n1988+n1987+1=n2(n1986−1)+n(n1986−1)+(n2+n+1)
Nên n2+n+1|n1988+n1987+1
Vậy n1988+n1987+1 là hợp số