K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

B = 97+313

B= (.....969) + (......323)

B= .....292

Chữ số tận cùng là 2.

16 tháng 7 2016

có cách nào khác ko bn

27 tháng 6 2023

 

    1. 1.Ta sẽ chứng minh bằng phương pháp quy nạp.
    2.  

    Gọi a_n là số thứ n trong dãy số đã cho. Ta sẽ chứng minh rằng không có 6 số liên tiếp trong dãy số đã cho có giá trị là 0, tức là a_i  0 với mọi i sao cho 1  i  6.

    • Với i = 1, 2, 3, 4, 5, ta thấy rằng a_i  0.
    • Giả sử với mọi i sao cho 1  i  k (với k  5), đều có a_i  0. Ta sẽ chứng minh rằng a_(k+1)  0.

    Nếu a_k  0, a_(k+1)  0 do a_(k+1) = chữ số tận cùng của tổng 6 số đứng ngay trước nó, và các số này đều khác 0.

    Nếu a_k = 0, ta xét 5 số đứng trước nó: a_(k-4), a_(k-3), a_(k-2), a_(k-1), a_k. Vì a_k = 0, nên tổng của 6 số này chính là tổng của 5 số đầu tiên, và theo giả thiết quy nạp, không có 5 số liên tiếp trong dãy số đã cho có giá trị là 0. Do đó, a_(k+1)  0.

    Vậy, theo nguyên tắc quy nạp, ta có dãy số đã cho không chứa 6 số liên tiếp bằng 0.

    1. 2. Khi a, b, c là các số nguyên, ta có thể chứng minh bằng phương pháp quy nạp rằng sau hữu hạn bước biến đổi, trong bộ 3 thu được có ít nhất 1 số bằng 0.
    • Với a, b, c bất kỳ, ta có ab, bc, ca  0. Nếu một trong ba số này bằng 0, ta đã tìm được số bằng 0.
    • Giả sử sau k bước biến đổi, trong bộ 3 thu được có ít nhất 1 số bằng 0. Ta sẽ chứng minh rằng sau k+1 bước biến đổi, trong bộ 3 thu được cũng có ít nhất 1 số bằng 0.

    Giả sử trong bộ 3 thu được sau k bước biến đổi, có a = 0. Khi đó, ta chỉ cần chứng minh rằng trong 2 số còn lại, có ít nhất 1 số bằng 0.

    Nếu b = 0 hoặc c = 0, ta đã tìm được số bằng 0.

    Nếu b và c đều khác 0, ta có:

    bc, ca, ab  1

    Do đó, trong 3 số bc, ca, ab, không có số nào bằng 0. Khi đó, ta có:

    b(bc)ca=ab

    Vậy, ta có thể thay bằng b - (b - c) để giảm số lượng biến đổi. Sau đó, ta lại áp dụng phương pháp quy nạp để chứng minh rằng trong bộ 3 thu được sau k+1 bước biến đổi, có

    10:06
10 tháng 6 2016

Phạm Tuấn Kiệt copy nhá ! 

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Mệnh đề này đúng. (Dấu hiệu chia hết cho 5)

18 tháng 8 2017

chữ số tận cùng là 0

ta thấy 1 số chính phương không bao giờ có đuôi là 2;3;7;8

Mà nếu mệnh đề (2) đúng thì n+8=...2 => mệnh đề (1) sai và n-1=...3 => mệnh đề (3) sai

Nhưng chỉ có 1 mệnh đề sai nên chỉ có mệnh đề (2) là thỏa mãn

Vậy n+8 và n+1 là số  chính phương

\(\Rightarrow\left(n+8\right)-\left(n-1\right)=9\)

\(\Leftrightarrow\left(n+8\right)^2-\left(n-1\right)^2=9^2\)

\(\Leftrightarrow\left[\left(n+8\right)-\left(n-1\right)\right]\left[\left(n+8\right)+\left(n-1\right)\right]=9^2\)

\(\Leftrightarrow9\left(2n+7\right)=9^2\)

\(\Leftrightarrow2n-7=9\)

\(\Leftrightarrow n=8\)

Vậy n=8 thì mới thỏa mãn mệnh đề (1) và (3)