\(x\in X\)để

\(x^4+x^3+x^2+x+1\)là số chính phương

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, \(x^3+2\sqrt{2}x^2+2x=0\)

\(x\left(x^2+2\sqrt{2}x+2\right)+0\)

\(x\left(x+\sqrt{2}\right)^2=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x+\sqrt{2}=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-\sqrt{2}\end{cases}}\)

Vậy x = 0 ; x = \(-\sqrt{2}\)

b,vì  \(n^2+n+1\)là số chính phương nên đặt \(n^2+n+1=a^2\)với \(a\in N\)

\(n^2+n+1=a^2\)

\(\Leftrightarrow4n^2+4n+4=4a^2\)

\(\Leftrightarrow4n^2+4n+1+3=4a^2\)

\(\Leftrightarrow\left(2n+1\right)^2+3=4a^2\)

\(\Leftrightarrow4a^2-\left(2n+1\right)^2=3\)

\(\Leftrightarrow\left(2a-2n-1\right)\left(2a+2n+1\right)=3\)

Ta thấy \(\hept{\begin{cases}2a-2n-1=1\\2a+2n+1=3\end{cases}}\) Vì \(\left(2a+2n+1>2a-2n-1>0\right)\)

\(\Leftrightarrow\hept{\begin{cases}2\left(a-n\right)=2\\2\left(a+n\right)=2\end{cases}\Leftrightarrow}\hept{\begin{cases}a-n=1\\a+n=1\end{cases}}\)

\(a-n=1\Rightarrow a=1+n\)

\(\Rightarrow1+n+n=1\)

\(\Leftrightarrow2n=1-1\)

\(\Leftrightarrow2n=0\)

\(\Leftrightarrow n=0\)

11 tháng 4 2017

Dễ vậy cũng không biết,ngốc vải

11 tháng 4 2017

dễ thì làm đi ko thì đừng có nói 

8 tháng 12 2016

a) \(A=\frac{4x-1}{x-2}-\frac{x-3}{x-1}+\frac{-2x+4}{x^2-3x+2}\)

\(\Leftrightarrow A=\frac{4x-1}{x-2}-\frac{x-3}{x-1}+\frac{-2x+4}{x^2-x-2x+2}\)

\(\Leftrightarrow A=\frac{4x-1}{x-2}-\frac{x-3}{x-1}+\frac{-2x+4}{x\left(x-1\right)-2\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{4x-1}{x-2}-\frac{x-3}{x-1}+\frac{-2x+4}{\left(x-1\right)\left(x-2\right)}\)

\(\Leftrightarrow A=\frac{\left(4x-1\right)\left(x-1\right)-\left(x-3\right)\left(x-2\right)-2x+4}{\left(x-2\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{4x^2-4x-x+1-x^2+2x+3x-6-2x+4}{\left(x-2\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{3x^2-2x-1}{\left(x-2\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{3x^2-3x+\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}\)\(=\frac{3x\left(x-1\right)+\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}\)\(=\frac{\left(x-1\right)\left(3x+1\right)}{\left(x-2\right)\left(x-1\right)}\)\(=\frac{3x+1}{x-2}\)

b)\(\frac{3x+1}{x-2}=\frac{3x-6+7}{x-2}=\frac{3x-6}{x-2}+\frac{7}{x-2}=3+\frac{7}{x-2}\)

Ta có : \(x-2\inƯ_7\left\{-7;-1;1;7\right\}\)

\(\Rightarrow\left[\begin{array}{nghiempt}x-2=-7\\x-2=-1\\x-2=1\\x-2=7\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}\text{x=-5}\\\text{x=1}\\\text{x=3}\\\text{x}=9\end{array}\right.\)

\(\text{x}=1\) (loại)

Vậy giá trị nguyên tập hợp x là:

x=-5;3;9