Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,x^2+3x=0
=> x.(x+3)=0
=> +)x=0
+) x+3=0 => x=-3
b,x^3-4x=0
=> x.(x^2-2^2)=0
=> x.(x-2).(x+2)=0
=> +) x=0
+) x-2=0 => x=2
+) x+2=0 => x= -2
a) \(x^2+3x=0\)
\(x\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
vay \(\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
b) \(x^3-4x=0\)
\(x\left(x^2-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=4\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
vay \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
1/x(x-y)-4x+4y
=x(x-y)-4(x-y)
=(x-y)(x-4)
2/a)x^2-x=0
x(x-1)=0
<=>x=0 hoặc x-1=0
x =1
=>S={0;1}
b)(x+2)(x-3)-x-2=0
(x+2)(x-3)-(x+2)=0
(x+2)(x-3-1)=0
(x+2)(x-4)=0
<=>x+2=0 hoặc x-4=0
x =-2 x =4
=>{-2;4}
c)36^2-49=0
(6x-7)(6x+7)=0
<=>6x-7=0 hoặc 6x+7=0
6x =7 6x =-7
x =7/6 x =-7/6
=>{7/6;-7/6}
3/(n+7)^2-(n-5)^2
=(n+7-n+5)(n+7+n-5)
=12(2n+2)
=12*2(n+1)
=24(n+1) chia hết cho 24
=>(n+7)^2-(n-5)^2 chia hết cho 24.
a,ĐKXĐ: \(x^2-4\ne0\) \(\Leftrightarrow x\ne\pm2\)
b,Rút gọn:
\(C=\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3}{\left(x-2\right)\left(x+2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3-x\left(x+2\right)-2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^3-x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{\left(x^3-4x\right)-\left(x^2-4\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x\left(x^2-4\right)-\left(x^2-4\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{\left(x^2-4\right)\left(x-1\right)}{x^2-4}\)
\(=x-1\)
Để C = 0 thì x - 1 = 0
=> x = 1
Vậy : Để C = 0 thì x = 1
c,Để C nhận giá trị dương thì C > 0
Hay: x - 1 > 0
<=> x > 1
Vậy: Để C dương thì x > 1
=.= hok tốt!!
phân tích thành nhân tử:
\(x^2-9=x^2-3^2=\left(x+3\right)\left(x-3\right)\)
\(4x^2-25=\left(2x\right)^2-5^2=\left(2x+5\right)\left(2x-5\right)\)
\(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2\)\(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)\)
\(9x^2+6xy+y^2=\left(3x\right)^2+2\cdot3x\cdot1+y^2=\left(3x+y\right)^2\)
\(x^2+4y^2+4xy=x^2+2\cdot x\cdot2y+\left(2y\right)^2=\left(x+2y\right)^2\)
a. \(x^3-0.25x=0\Rightarrow x\left(x^2-\frac{1}{4}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-\frac{1}{4}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x^2=\frac{1}{4}\end{cases}}}\) \(\Rightarrow\orbr{\begin{cases}x=0\\\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{-1}{2}\end{cases}}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{-1}{2}\end{cases}}\end{cases}}\)=> \(x\in\left\{0;\frac{1}{2};\frac{-1}{2}\right\}\)
b, \(x^2-10x=-25\)\(\Rightarrow x^2-10x+25=0\)
\(\Rightarrow\left(x-5\right)^2=0\Rightarrow x-5=0\Rightarrow x=5\)
a, \(x^2-9=x^2-3x+3x-9\)
\(=x\left(x-3\right)+3\left(x-3\right)=\left(x-3\right)\left(x+3\right)\)
b, \(4x^2-25=\left(2x\right)^2-5^2=\left(2x-5\right)\left(2x+5\right)\)
c, \(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2=\left(x^3+y^3\right)\left(x^3-y^3\right)\)
d, \(9x^2+6xy+y^2=\left(3x\right)^2+2\left(3xy\right)+y^2\) \(=\left(3x+y\right)^2\)
e, \(6x-9-x^2=6x-18+9-x^2\) \(=6\left(x-3\right)-\left(x-3\right)\left(x+3\right)\)
\(=\left(x-3\right)\left(6-x-3\right)=\left(x-3\right)\left(3-x\right)\)
f, \(x^2+4y^2+4xy=x^2+2\left(2xy\right)+\left(2y\right)^2\)
\(\left(x+2y\right)^2\)
\(\)
Đề như này hả bạn? :V
\(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-9x^2+27x-27-\left(x^3-27\right)+9\left(x+1\right)^2=15\)
\(\Leftrightarrow-9x^2+27x+9\left(x^2+2x+1\right)=15\)
\(\Leftrightarrow45x=6\)\(\Leftrightarrow x=\dfrac{2}{15}\)
Vậy...
ĐKXĐ : x≠±3
A=3x+15x2−9+1x+3−2x−3
=3x+15+x−3−2(x+3)(x+3)(x−3)
=4x−2(x+3)+15−3(x+3)(x−3)
=2x+6(x+3)(x−3)
=2x−3
b/
2x−3=12
⇔2.2=(x−3).1
⇔4=x−3
⇔x−3=4
⇔x=7(thỏa mãn)
Vậy A=12 khi
\(a,\left(x+1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=17\)\(\Leftrightarrow x^3+3x^2+3x+1+8-x^3+3x^2+6x-17=0\)\(\Leftrightarrow6x^2+9x-8=0\)
\(\Leftrightarrow x^2+\dfrac{3}{2}x-\dfrac{4}{3}=0\)
\(\Leftrightarrow\left(x^2+\dfrac{3}{2}x+\dfrac{9}{16}\right)-\dfrac{9}{16}-\dfrac{4}{3}=0\)
\(\Leftrightarrow\left(x+\dfrac{3}{4}\right)^2=\dfrac{91}{48}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{3}{4}=\sqrt{\dfrac{91}{48}}\\x+\dfrac{3}{4}=-\sqrt{\dfrac{91}{48}}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{91}{48}}-\dfrac{3}{4}\\x=-\sqrt{\dfrac{91}{48}}-\dfrac{3}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-9+\sqrt{273}}{12}\\x=-\dfrac{9+\sqrt{273}}{12}\end{matrix}\right.\)
b, \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)
\(\Leftrightarrow x^3+8-x^3+2x-15=0\)
\(\Leftrightarrow2x=7\Rightarrow x=\dfrac{7}{2}\)
a,\(\Leftrightarrow\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)-17=0\)
\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x-17=0\)
\(\Leftrightarrow9x-10=0\)
\(\Leftrightarrow x=\frac{10}{9}\)
x=0
x=6,5