Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1993^1993+1997^1997=(1993^4)^498.1993+(1997^4)^499.1997
=(.....1)^498.1993+(....1)^499.1997
=(...1).1993+(....1).1997
=(...3)+(....7)
=(...0)
\(A=1+2+2^2+...+2^{99}\)
\(2A=2+2^2+2^3+2^{100}\)
\(2A-A=\left(2+2^2+...+2^{100}\right)-\left(1+2+...+2^{99}\right)\)
\(A=2^{100}-1< 2^{100}\)
Chữ số tận cùng của 72^4n+1thì mk ko bt
Nhưng chữ số tận cùng của 62019 thì bằng 6 nha :)))
Hok tốt
Bạn tham khảo bài giảng cô Huyền về Chữ số tận cùng nhé:
Bài giảng - Tìm chữ số tận cùng - Học toán với OnlineMath
Cái này phải dùng đồng dư thức mà ad , bài giảng trên ko nói nhiều về cái này
\(M=3^0+3^1+3^2+...+3^{49}+3^{50}\)
\(3M=3^1+3^2+3^3+...+3^{50}+3^{51}\)
\(3M-M=3^{31}-1\)
\(2M=3^{4.7+3}-1\)
\(2M=81^7.27-1\)
\(2M=\overline{...1}.27-1\)
\(2M=\overline{...7}-1=\overline{...6}\)
\(M=\overline{...3}\Rightarrow M\)không phải số chính phương
2. a) \(7^2=49\equiv-1\left(mod5\right)\)
\(\Rightarrow\left(7^2\right)^{6n}\equiv\left(-1\right)^{6n}\left(mod5\right)\)
\(\Rightarrow7^{12n}\equiv1\left(mod5\right)\Rightarrow7^{12n}-1⋮5\)
b) + \(12^2=144\equiv-1\left(mod5\right)\)
\(\Rightarrow12^{4n}\equiv1\left(mod5\right)\Rightarrow12^{4n+1}\equiv2\left(mod5\right)\) (1)
+ \(3^2\equiv-1\left(mod5\right)\Rightarrow3^{4n}\equiv1\left(mod5\right)\)
\(\Rightarrow3^{4n+1}\equiv3\left(mod5\right)\) (2)
+ Từ (1) và (2) \(\Rightarrow12^{4n+1}+3^{4n+1}⋮5\)
c) \(9\equiv-1\left(mod10\right)\Rightarrow9^{2019}\equiv\left(-1\right)^{2019}\left(mod10\right)\)
\(\Rightarrow9^{2019}+4\equiv-1+4=-3\left(mod10\right)\)
=> \(9^{2014}+4\) chia 10 dư 7
Lời giải:
\(432\equiv 32\pmod {100}\Rightarrow 432^{2019}\equiv 32^{2019}\equiv 2^{5.2019}\pmod{100}\)
Lại có:
\(2^{10}\equiv 24\equiv -1\pmod {25}\)
\(\Rightarrow 2^{5.2019}=(2^{10})^{1009}.2^5\equiv (-1)^{1009}.2^5\equiv 18\pmod {25}\)
Đặt \(2^{5.2019}=25k+18\).
Vì $2^{5.2019}$ chẵn nên $k$ chẵn (1)
Vì $2^{5.2019}$ chia hết cho $4$ nên $25k+18$ chia hết cho $4$. Mà $18$ không chia hết cho $4$ nên $k$ không chia hết cho $4$ (2)
Từ (1);(2) suy ra $k$ có dạng $4t+2$
Khi đó $2^{5.2019}=25(4t+2)+18=100t+68\equiv 68\pmod{100}$
\(\Rightarrow 432^{2019}\equiv 2^{5.2019}\equiv 68\pmod {100}\) hay số đã cho có tận cùng là $68$
Ta có:
7657 - 2
= 7656.7 - 2
= (74)164.7 - 2
= (...1)164.7 - 2
= (...1).7 - 2
= (...7) - 2
= (...5)
74x164x 7-2
=...4164x7-2
=.....8-2
=...6
k nha bn hk rồi