\(Tìm\)\(chữ\)\(số\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2016

Ta có:

7657 - 2

= 7656.7 - 2

= (74)164.7 - 2

= (...1)164.7 - 2

= (...1).7 - 2

= (...7) - 2

= (...5)

21 tháng 7 2016

74x164x 7-2

=...4164x7-2

=.....8-2

=...6

k nha bn hk rồi

8 tháng 11 2016

51^51 co tan cung la 1

8 tháng 11 2016

6^666 co tan cung la 6

8 tháng 11 2016

1993^1993+1997^1997=(1993^4)^498.1993+(1997^4)^499.1997

=(.....1)^498.1993+(....1)^499.1997

=(...1).1993+(....1).1997

=(...3)+(....7)

=(...0)

8 tháng 11 2016

chi 1 chu so tan cung ak

19 tháng 10 2017

A=2^100-1

suy ra A<2^100

19 tháng 10 2017

mk cần gấp lắm rồi

19 tháng 10 2017

\(A=1+2+2^2+...+2^{99}\)

\(2A=2+2^2+2^3+2^{100}\)

\(2A-A=\left(2+2^2+...+2^{100}\right)-\left(1+2+...+2^{99}\right)\)

\(A=2^{100}-1< 2^{100}\)

18 tháng 2 2019

6^2019 có tận cùng là sô 6

18 tháng 2 2019

Chữ số tận cùng của 72^4n+1thì mk ko bt

Nhưng chữ số tận cùng của 62019 thì bằng 6 nha :)))

Hok tốt 

29 tháng 10 2016

Bạn tham khảo bài giảng cô Huyền về Chữ số tận cùng nhé:

Bài giảng - Tìm chữ số tận cùng - Học toán với OnlineMath

29 tháng 10 2016

Cái này phải dùng đồng dư thức mà ad , bài giảng trên ko nói nhiều về cái này

12 tháng 5 2018

\(M=3^0+3^1+3^2+...+3^{49}+3^{50}\)

\(3M=3^1+3^2+3^3+...+3^{50}+3^{51}\)

\(3M-M=3^{31}-1\)

\(2M=3^{4.7+3}-1\)

\(2M=81^7.27-1\)

\(2M=\overline{...1}.27-1\)

\(2M=\overline{...7}-1=\overline{...6}\)

\(M=\overline{...3}\Rightarrow M\)không phải số chính phương

18 tháng 5 2018

cam on

Y
6 tháng 7 2019

2. a) \(7^2=49\equiv-1\left(mod5\right)\)

\(\Rightarrow\left(7^2\right)^{6n}\equiv\left(-1\right)^{6n}\left(mod5\right)\)

\(\Rightarrow7^{12n}\equiv1\left(mod5\right)\Rightarrow7^{12n}-1⋮5\)

b) + \(12^2=144\equiv-1\left(mod5\right)\)

\(\Rightarrow12^{4n}\equiv1\left(mod5\right)\Rightarrow12^{4n+1}\equiv2\left(mod5\right)\) (1)

+ \(3^2\equiv-1\left(mod5\right)\Rightarrow3^{4n}\equiv1\left(mod5\right)\)

\(\Rightarrow3^{4n+1}\equiv3\left(mod5\right)\) (2)

+ Từ (1) và (2) \(\Rightarrow12^{4n+1}+3^{4n+1}⋮5\)

c) \(9\equiv-1\left(mod10\right)\Rightarrow9^{2019}\equiv\left(-1\right)^{2019}\left(mod10\right)\)

\(\Rightarrow9^{2019}+4\equiv-1+4=-3\left(mod10\right)\)

=> \(9^{2014}+4\) chia 10 dư 7

AH
Akai Haruma
Giáo viên
6 tháng 7 2019

Lời giải:
\(432\equiv 32\pmod {100}\Rightarrow 432^{2019}\equiv 32^{2019}\equiv 2^{5.2019}\pmod{100}\)

Lại có:

\(2^{10}\equiv 24\equiv -1\pmod {25}\)

\(\Rightarrow 2^{5.2019}=(2^{10})^{1009}.2^5\equiv (-1)^{1009}.2^5\equiv 18\pmod {25}\)

Đặt \(2^{5.2019}=25k+18\).

Vì $2^{5.2019}$ chẵn nên $k$ chẵn (1)

Vì $2^{5.2019}$ chia hết cho $4$ nên $25k+18$ chia hết cho $4$. Mà $18$ không chia hết cho $4$ nên $k$ không chia hết cho $4$ (2)

Từ (1);(2) suy ra $k$ có dạng $4t+2$

Khi đó $2^{5.2019}=25(4t+2)+18=100t+68\equiv 68\pmod{100}$

\(\Rightarrow 432^{2019}\equiv 2^{5.2019}\equiv 68\pmod {100}\) hay số đã cho có tận cùng là $68$