K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2016

bài 1 là:7

bài 2 là:2

30 tháng 10 2016

câu 1 là 7

câu 2 là 2

13 tháng 10 2016

X2>0

→(x2+1)2>1

→-(x2+1)2<-1

→7-(x2+1)2<6

Dấu"="xảy ra khi và chỉ khi x2=0

→x=0

Vậy GTNN là 6↔x=0

Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.

28 tháng 2 2021

\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)

Vậy \(\left(x;y\right)=\left(5;-2\right)\)

a) Để A có giá trị nhỏ nhất thì (x-7)2 0

Hay (x-7)2+ 2003 < 2003

Vì (x-7)2 luôn dương => GTNN của (x-7)2+ 2003 = 2003

Dấu = chỉ xảy ra khi (x-7)2=0

                            => x-7  =0

                               x       = 7

Vây GTNN của A = 2003 <=> x=7

b) Để B có GTLN thì -(x+2)2 > 0

Hay -(x+2)2+17 > 17

x thuộc tập N

11 tháng 3 2020

a) Ta có (x-7)2 >=0 với mọi x thuộc Z

=> (x-7)2 +2003 >= 2003 với mọi z thuộc Z

hay A >= 2003 

Dấu "=" xảy ra <=> (x-7)2=0 <=> x-7=0 <=> x=7

Vậy Min A=2003 đạt được khi x=7

b) Ta có -(x+2)2 =< 0 với mọi x thuộc Z

=> -(x+2)2+17 =< 17 với mọi x thuộc Z

hay B =< 17 

Dấu "=" <=> -(x+2)2=0

<=> x+2=0

<=> x=-2

Vậy MaxB=17 đạt được khi x=-2

4 tháng 7 2019

Lâu rồi không giải bài lớp 6 có gì sai sót xin bỏ qua hé!

1. a, để a+b lớn nhất thì a, b phải lớn nhất 

mà a,b là số nguyên có 4 chữ số nên a, b lớn nhất đều bằng 9999

suy ra a+b lớn nhất là 9999+9999=(tự tính)

b, tương tự trên nhưng a, b đều bằng -9999 (âm nha)

hai câu sau thì tự làm tìm giá trị a,b rồi cộng trừ theo đề.

2. số nguyên âm lớn nhất là -1

Mà  x+2019 là số nguyên âm lớn nhất  suy ra x+2019=-1

tiếp theo tự tính

3.hướng dẫn 

b, \(\left|x-28\right|+7=15\)

\(\Rightarrow\left|x-28\right|=8\)

\(\Rightarrow\orbr{\begin{cases}x-28=8\\x-28=-8\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=36\\x=30\end{cases}}\)

vậy.........................

4. hướng dẫn \(a.b=0\Rightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\)

a.,,\(\left(x-4\right)\left(x+7\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-4=0\\x+7=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=4\\x=-7\end{cases}}\)

Vậy....

b, \(\left(x-5\right)\left(x^2-9\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x^2-9=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=5\\x^2=9\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=5\\x=\pm3\end{cases}}\)

Vậy.....................

c,\(\left(x^2-7\right)\left(x^2-51\right)< 0\)

(đúng ra mk sẽ giải cách dễ hiểu hơn nhưng hơi rắc rối mà phần mềm này ko hiển thị hết được nên thôi nha)

Hướng dẫn: hai số nhân với nhau mà âm thì hai số đó trái dấu (tức là 1 âm 1 dương)

khi đó số lớn hơn sẽ dương mà số bé hơn sẽ âm

giải:

Ta có Vì \(\left(x^2-7\right)\left(x^2-51\right)< 0\) nên \(x^2-7\)và \(x^2-51\)trái dấu

Mà \(x^2-7\)\(>\)\(x^2-51\)nên \(\Rightarrow\hept{\begin{cases}x^2-7>0\\x^2-51< 0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x^2>7\\x^2< 51\end{cases}}\)\(\Rightarrow7< x^2< 51\)

Mà \(x\inℤ\)nên \(x^2\)là số chính phương \(\Rightarrow x^2\in\left\{9;16;25;36;49\right\}\)

\(\Rightarrow x\in\left\{3;4;5;6;7\right\}\)

Làm tắt tí hi vọng bạn hiểu!