Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phá dấu trị tuyệt đối rồi xét từng TH1
đó cách trình bày đó
Pain Địa Ngục Đạo Bn có thể trình bày chi tiết, đầy đủ hơn đc ko?
Ta có: 2(x + y + z) = \(-\frac{7}{6}+\frac{1}{4}+\frac{1}{12}=-\frac{5}{6}\)
=> x + y + z = \(-\frac{5}{12}\)
Từ đó suy ra: \(\hept{\begin{cases}z=\frac{3}{4}\\x=-\frac{2}{3}\\y=-\frac{1}{2}\end{cases}}\)
Vậy ...
a )
Ta có :
\(\frac{1+5y}{5x}=\frac{1+7y}{4x}\)
\(\Rightarrow\frac{4\left(1+5y\right)}{20x}=\frac{5\left(1+7y\right)}{20x}\)
\(\Rightarrow\frac{4+20y}{20x}=\frac{5+35y}{20x}\)
\(\Rightarrow4+20y=5+35y\)
\(\Rightarrow35y-20y=4-5\)
\(\Rightarrow15y=4-5\)
\(\Rightarrow15y=-1\)
\(\Rightarrow y=-\frac{1}{15}\)
Lại có :
\(\frac{1+3y}{12}=\frac{1+5y}{5x}\)
\(\Rightarrow\frac{1+3.-\frac{1}{15}}{12}=\frac{1+5.-\frac{1}{15}}{5x}\)
\(\Rightarrow\frac{1-\frac{1}{5}}{12}=\frac{1-\frac{1}{3}}{5x}\)
\(\Rightarrow\frac{4}{5}:12=\frac{4}{3}:5x\)
\(\Rightarrow\frac{1}{15}=\frac{4}{3}:5x\)
\(\Rightarrow5x=\frac{4}{3}:\frac{1}{15}\)
\(\Rightarrow5x=20\)
\(\Rightarrow x=4\)
Vậy \(x=4;y=-\frac{1}{15}\)
a) Xét \(\frac{1+5y}{5x}=\frac{1+7y}{4x}\)
\(\Rightarrow\frac{4x\left(1+5y\right)}{20x}=\frac{5\left(1+7y\right)}{20x}\)
\(\Rightarrow4x\left(1+5y\right)=5\left(1+7y\right)\)
\(\Rightarrow4+20y=5+35y\)
\(\Rightarrow35y-20y=4-5\)
\(\Rightarrow15y=-1\)
\(\Rightarrow y=\frac{-1}{15}\)
Xét \(\frac{1+3y}{12}=\frac{1+5y}{5x}\)
\(\Rightarrow\frac{1+3.\frac{-1}{15}}{12}=\frac{1+5.\frac{-1}{15}}{5x}\)
\(\Rightarrow\frac{1+\frac{-1}{5}}{12}=\frac{1+\frac{-1}{3}}{5x}\)
\(\Rightarrow\frac{\frac{4}{5}}{12}=\frac{\frac{2}{3}}{5x}\)
\(\Rightarrow\frac{4}{5}:12=\frac{2}{3}:5x\)
\(\Rightarrow\frac{1}{15}=\frac{2}{3}:5x\)
\(\Rightarrow5x=\frac{2}{3}:\frac{1}{15}\)
\(\Rightarrow5x=\frac{30}{3}\)
\(\Rightarrow x=\frac{30}{3}:5\)
\(\Rightarrow x=\frac{30}{3}.\frac{1}{5}\)
\(\Rightarrow x=2\)
Vậy x = 2 ; y = \(\frac{-1}{15}\)
#)Giải :
a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)
\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)
Vậy x = 45; y = 60; z = 84
b) Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)
\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)
\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)
Thay (1) vào (+) ta được :
\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)
\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)
Thay (2) và (+2) ta được :
\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)
\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)
Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)
Mà \(xyz=810\Rightarrow30k^3=810\)
\(\Rightarrow k^3=27\)
\(\Rightarrow k=3\)
Thay vào tìm x,,z.
\(Z=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{6480}\)
\(Z=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{80.81}\)
\(Z=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{80}-\frac{1}{81}\)
\(Z=\frac{1}{1}-\frac{1}{81}=\frac{80}{81}\)
\(Z=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{6480}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{80.81}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+.....+\frac{1}{80}-\frac{1}{81}\)
\(=1-\frac{1}{81}\)
\(=\frac{80}{81}\)