Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\)\(71+65\times4=\frac{x+140}{x}+260\)
\(\Rightarrow71+260=\frac{x-140}{x}+260\)
\(\Rightarrow71=\frac{x-140}{x}\)
\(\Rightarrow71x=x-140\)
\(\Rightarrow71x-x=-140\)
\(\Rightarrow70x=-140\)
\(\Rightarrow x=-2\)
\(b,\)\(y\times\frac{15}{2}-\frac{1}{3}\times\left(\frac{1}{4}+y\right)=90\frac{2}{3}\)
\(\Rightarrow\frac{15y}{2}-\frac{1}{12}-\frac{y}{3}=\frac{272}{3}\)
\(\Rightarrow\frac{90y}{12}-\frac{1}{12}-\frac{4y}{12}=\frac{1088}{12}\)
\(\Rightarrow90y-1-4y=1088\)
\(\Rightarrow86y=1089\)
\(\Rightarrow y=\frac{1089}{86}\)
a,
\(x+\frac{7}{15}=1\frac{1}{20}\)
\(x+\frac{7}{15}=\frac{21}{20}\)
\(x=\frac{21}{20}-\frac{7}{15}=\frac{63}{60}-\frac{28}{60}\)
\(x=\frac{35}{60}=\frac{7}{12}\)
b,
\(\left[3\frac{1}{2}-x\right]\cdot1\frac{1}{4}=\frac{15}{16}\)
\(\left[\frac{7}{2}-x\right]\cdot\frac{5}{4}=\frac{15}{16}\)
\(\frac{7}{2}-x=\frac{15}{16}:\frac{5}{4}=\frac{3}{4}\)
\(\frac{7}{2}-x=\frac{3}{4}\Rightarrow x=\frac{7}{2}-\frac{3}{4}\)
\(x=\frac{11}{4}\)
c,
\(1\frac{1}{5}x+\frac{2}{3}x=\frac{56}{125}\Leftrightarrow\frac{6}{5}x+\frac{2}{3}x=\frac{56}{125}\)
\(\frac{28}{15}x=\frac{56}{125}\Rightarrow x=\frac{6}{25}\)
d,
\(60\%x+0,4x+x:3=2\)
\(\frac{3}{5}x+\frac{2}{5}x+\frac{1}{3}x=2\)
\(\frac{4}{3}x=2\Rightarrow x=\frac{3}{2}\)
Nguyễn Anh Thiện
a)
x + \(\frac{7}{15}\) = \(1\frac{1}{20}\)
X + \(\frac{7}{15}=\frac{21}{20}\)
X \(=\frac{21}{20}-\frac{7}{15}\)
X \(=\frac{63}{60}-\frac{28}{60}=\frac{35}{60}=\frac{7}{12}\)
^^ Học tốt !
\(\dfrac{3}{4}\times\dfrac{8}{5}:1\dfrac{1}{6}\)
=\(\dfrac{6}{5}:\) \(\dfrac{7}{6}\)
=\(\dfrac{6}{5}\times\dfrac{6}{7}=\dfrac{36}{35}\)
2\(\dfrac{1}{3}\) x 1\(\dfrac{1}{4}\) -\(\dfrac{7}{5}\)
\(\dfrac{7}{3}\times\dfrac{5}{4}-\) \(\dfrac{7}{5}\)
\(\dfrac{35}{12}-\dfrac{7}{5}\)
\(\dfrac{175}{60}-\dfrac{84}{60}=\dfrac{91}{60}\)
4\(\dfrac{2}{3}+1\dfrac{1}{4} +2\dfrac{1}{3}+2\dfrac{3}{7}\)
(4 +2) + \(\left(\dfrac{2}{3}+\dfrac{1}{3}\right)\) +1\(\dfrac{1}{4}\) + \(2\dfrac{3}{7}\)
6 + 1 + \(\dfrac{5}{4}\) + \(\dfrac{17}{7}\)
7 + \(\dfrac{103}{28}\)
\(\dfrac{299}{28}\)
a ) 1 + 2 + 3 + 4 + ... + x = 1275 ( có x số tự nhiên )
( x + 1 ) . x : 2 = 1275
( x + 1 ) . x = 1275 x 2
( x + 1 ) . x = 2550
( x + 1 ) . x = 50 . 51
Mà x , x + 1 là hai số tự nhiên liên tiếp => x = 50
Vậy x = 50
1+2+3+4+...+x=1275
\(\frac{x.\left(x+1\right)}{2}=1275\)
x(x+1)=1275x2=2550
x(x+1)=50.51
x=50
Ta có : \(\frac{1}{4}+\frac{1}{3}:\frac{1}{x}=\frac{11}{12}\)
\(\Rightarrow\frac{1}{3}:\frac{1}{x}=\frac{11}{12}-\frac{1}{4}\)
\(\frac{1}{3}:\frac{1}{x}=\frac{2}{3}\)
\(\frac{1}{x}=\frac{1}{3}:\frac{2}{3}\)
\(\frac{1}{x}=\frac{1}{3}\times\frac{3}{2}\)
\(\frac{1}{x}=\frac{1}{2}\)
=> x = 2
a) \(\frac{x\div3-16}{2}+21=38\)
\(\frac{x\div3-16}{2}=38+21\)
\(\frac{x\div3-16}{2}=59\)
\(x\div3-16=59.2\)
\(x\div3-16=118\)
\(x\div3=118+16\)
\(x\div3=134\)
\(x=134.3\)
\(x=402\)
b) \(\frac{1}{4}+\frac{1}{3}\div\frac{1}{x}=\frac{11}{12}\)
\(\frac{1}{3}\div\frac{1}{x}=\frac{11}{12}-\frac{1}{4}\)
\(\frac{1}{3}\div\frac{1}{x}=\frac{2}{3}\)
\(\frac{1}{x}=\frac{1}{3}\div\frac{2}{3}\)
\(\frac{1}{x}=\frac{1}{2}\)
Vậy x = ....
\(\frac{1010+1111+1212+1313+1414+1515+1616+1717}{2020+2121+2222+2323+2424+2525+2626+2727}\)
\(=\frac{101.10+101.11+...+101.17}{101.20+101.21+...+101.27}\)
\(=\frac{101.\left(10+11+...+17\right)}{101.\left(20+21+...+27\right)}\)
\(=\frac{108}{188}\)
\(=\frac{27}{47}\)
\(2>\left(\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{4}{96}\right)\cdot5.y>\frac{5}{6}\)
\(\Rightarrow2>\left(\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{1}{24}\right):5.y>\frac{5}{6}\)
\(\Rightarrow2>\left(\frac{20}{120}+\frac{16}{120}+\frac{9}{120}+\frac{5}{120}\right):5.y>\frac{5}{6}\)
\(\Rightarrow2>\frac{5}{12}:5.y>\frac{5}{6}\)
\(\Rightarrow2>\frac{1}{12}.y>\frac{5}{6}\)
Đặt :\(\frac{1}{12}.y=2\Rightarrow y=2:\frac{1}{12}=24\)
\(\frac{1}{12}.y=\frac{5}{6}\Rightarrow y=\frac{5}{6}:\frac{1}{12}=10\)
\(\Rightarrow24>y>10\)
\(\Rightarrow y\in\left\{11;12;...;23\right\}\)
Các bạn nêu rõ cách làm từng bài giúp mình nhé! Thanks ^-^!
y= 13,5
Trả lời:
\(y\times\frac{15}{2}-\frac{1}{3}\times\left(\frac{1}{4}+y\right)=96\frac{2}{3}\)
\(\Leftrightarrow y\times\frac{15}{2}-\frac{1}{12}-\frac{1}{3}\times y=\frac{290}{3}\)
\(\Leftrightarrow y\times\left(\frac{15}{2}-\frac{1}{3}\right)=\frac{387}{4}\)
\(\Leftrightarrow y\times\frac{43}{6}=\frac{387}{4}\)
\(\Leftrightarrow y=\frac{27}{2}\)
Vậy \(y=\frac{27}{2}\)