\(y,x\)

a) x + 2x + 3x + .... + 30x = 11 625

b)x * ( y - 1 ) - 3y + 3 = 0...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2018

a)
\(\left|x\right|-2\left|x\right|+3\left|x\right|=16+6\left|x\right|-19\)
\(\left|x\right|-2\left|x\right|+3\left|x\right|-6\left|x\right|=16-19\)
\(\left|x\right|.\left(1-2+3-6\right)=-3\)
\(\left|x\right|.\left(-4\right)=-3\)
\(\left|x\right|=\dfrac{3}{4}\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)



b,
2.(|x| - 5) - 15 = 9
\(2.\left(\left|x\right|-5\right)=9+15\)
\(2.\left(\left|x\right|-5\right)=24\)
\(\left|x\right|-5=24:2\)
\(\left|x\right|-5=12\)
\(\left|x\right|=12+5\)
\(\left|x\right|=17\)
\(\Rightarrow\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)

c,
|8 - 2x| + |4y - 16| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|8-2x\right|=0\\\left|4y-16\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}8-2x=0\\4y-16=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=8\\4y=16\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)


d,

|x - 14| + |2y - x| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|x-14\right|=0\\\left|2y-x\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-14=0\\2y-x=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=14\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)

2.Tìm x, y, z biết

a,
2.|3x| + |y + 3| + |z - y| = 0
\(\Rightarrow\left\{{}\begin{matrix}2.\left|3x\right|=0\\\left|y+3\right|=0\\\left|z-y\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|3x\right|=0\\y+3=0\\z-y=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x=0\\y=-3\\z=y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)

b, (x - 3y)2 + | y + 4|= 0
\(\Rightarrow\left\{{}\begin{matrix}\left(x-3y\right)2=0\\\left|y+4\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-4\right)\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)

18 tháng 1 2017

a. \(xy+x-y=9\)

\(\Leftrightarrow xy+x-y-1=9-1\)

\(\Leftrightarrow x\left(y+1\right)-\left(y+1\right)=8\)

\(\Leftrightarrow\left(x-1\right)\left(y+1\right)=8\)

Ta có bảng:

x - 1 1 -1 2 -2 4 -4 8 -8
y + 1 8 -8 4 -4 2 -2 1 -1
x 2 0 3 -1 5 -3 9 -7
y 7 -9 3 -5 1 -3 0 -2

Vậy các cặp (x;y) là (2;7) ; (0;-9) ; (3;3) ; (-1;-5) ; (5;1) ; (-3;-3) ; (9;0) ; (-7;-2)

18 tháng 1 2017

b) xy+2x-3y+5=0

\(\Leftrightarrow xy+2x-3y-6+6+5=0\)

\(\Leftrightarrow x\left(y+2\right)-3\left(y+2\right)+11=0\)

\(\Leftrightarrow\left(x-3\right)\left(y+2\right)=-11\)

Mà -11=-1*11=11*-1=-11*1=1*-11

Do đó ta lập bảng

x-3= y+2= x= y=
-1 11 2 9
11 -1 14 -3
-11 1 -8 -1
1 -11 4 -13

Vậy các cặp (x,y) là: (2,9);(14,-3);(-8,-1);(4,-13)

18 tháng 11 2018

\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)

\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)

\(\Rightarrow x=165;y=20;z=25\)

12 tháng 4 2019

Bài 1: a) Do (3-2x)2 \(\ge0\) và (y-5)20 \(\ge0\)

mà (3-2x)2+(y-5)20\(\le0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(3-2x\right)^2=0\\\left(y-5\right)^{20}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3-2x=0\\y-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=3-0=3\\y=0+5=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3}{2}\\y=5\end{matrix}\right.\)

Vậy: \(x=\frac{3}{2};y=5\)

c) x là các số nguyên hả bạn?
Do (x-3).(x-4)\(\le0\)

\(\Rightarrow\) Có hai trường hợp:

TH1: (x-3)(x-4)=0

Trong hai số (x-3) và (x-4) có một số bằng 0.

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0+3=3\\x=0+4=4\end{matrix}\right.\)

TH2: (x-3)(x-4)<0

Trong hai số x-3 và x-4 có một số là số nguyên dương, 1 số là số nguyên âm.

mà x-4<x-3 \(\Rightarrow\) x-4 là số nguyên âm ( x-4<0) \(\Leftrightarrow\) x<4 (1)

x-3 là số nguyên dương (x-3>0) \(\Rightarrow x>3\) (2)

Từ (1) và (2) \(\Rightarrow\) 3<x<4 mà x là các số nguyên nên x ko tm

Vậy: x\(\in\left\{3;4\right\}\)

Bài 2:

c) (x-12).(y+5)=7=1.7=7.1=-1.-7=-7.-1
\(\Rightarrow\) \(\left[{}\begin{matrix}x-12=1;y+5=7\\x-12=7;y+5=1\\x-12=-1;y+5=-7\\x-12=-7;y+5=-1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=13;y=2\\x=19;y=-4\\x=11;y=-12\\x=5;y=-6\end{matrix}\right.\)

Vậy:...

11 tháng 4 2019

Phùng Tuệ Minh

20 tháng 7 2017

a,x/2=y/5

<=> 2x/4=y/5=2x+y/4+5=18/9=2

+,x/2=2 => x=4

+, y/5=2 => y=10

g, x/2=y/5

đặt x/2=y/5=k

=> x=2k ; y=5k

ta có 2k.5k=90

      k2.10=90

      k2=9

 => k=3             k=-3

+, x/2=2=> x=4                       x/2=-2 => x=-4

+, y/5=2 => y=10                  y/5=-2 => y=-10

 CÁC Ý SAU BN LÀM NỐT NHÉ DỄ MÀ 

28 tháng 7 2017

a)  Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{2x+y}{4+5}=\frac{18}{9}=2\)

\(\Rightarrow x=4;y=10\)

mấy bài còn lại tương tự

11 tháng 1 2019

Giúp mk với!

Mk đang gấp!

11 tháng 1 2019

vì /x+1/ và /y-1/ đều >0 nên  /x+1/> 1 và (/x+1/;/y-1/)=(1;0)

Ta có:

+) x+1=1 => x=0

+) x+1=-1 => x=-2

+) y-1=0 => y=1

CÁC CÂU CÒN LẠI BẠN TỰ LÀM NHÉ!