\(y^{200}=y\)

b)\(y^{2008}=y^{2010}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2021

\(a,\Leftrightarrow y^{200}-y=y\left(y^{199}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=0\\y^{199}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}y=0\\y=1\end{matrix}\right.\)

Vậy ..

\(b,\Leftrightarrow y^{2010}-y^{2008}=y^{2008}\left(y^2-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y^{2008}=0\\y^2=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}y=0\\y=1\\y=-1\end{matrix}\right.\)

Vậy ...

\(c,\Leftrightarrow\left(2y-1\right)^{50}-\left(2y-1\right)=\left(2y-1\right)\left(\left(2y-1\right)^{49}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2y-1=0\\\left(2y-1\right)^{49}=1\end{matrix}\right.\)

\(\Leftrightarrow y=\dfrac{1}{2}\)

Vậy ..

\(d,\Leftrightarrow\left(\dfrac{y}{3}-5\right)^{2008}\left(\left(\dfrac{y}{3}-5\right)^2-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(\dfrac{y}{3}-5\right)^{2008}=0\\\left(\dfrac{y}{3}-5\right)^2=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{y}{3}-5=0\\\dfrac{y}{3}-5=1\\\dfrac{y}{3}-5=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}y=15\\y=18\\y=12\end{matrix}\right.\)

Vậy ..

8 tháng 4 2017

1. a) \(2009-\left|x-2009\right|=x\)

\(\Rightarrow\left|x-2009\right|=2009-x\)

\(\Rightarrow\left|x-2009\right|=-\left(x-2009\right)\)

\(\Rightarrow x-2009\le0\)

\(\Rightarrow x\le2009\)

Vậy \(x\le2009.\)

b) Ta có: \(\left[{}\begin{matrix}\left(2x-1\right)^{2008}\ge0\forall x\\\left(y-\dfrac{2}{5}\right)^{2008}\ge0\forall y\\\left|x+y-z\right|\ge0\forall x,y,z\end{matrix}\right.\) \(\Rightarrow\left(2x-1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y-z\right|\ge0\forall x,y,z\)

Dấu \("="\) xảy ra khi \(\left[{}\begin{matrix}\left(2x-1\right)^{2008}=0\\\left(y-\dfrac{2}{5}\right)^{2008}=0\\\left|x+y-z\right|=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{2}{5}\\z=\dfrac{9}{10}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{2}{5}\\z=\dfrac{9}{10}\end{matrix}\right.\).

8 tháng 4 2017

Bạn kia làm câu 1 rồi thì mình làm câu 2 nhé!

2. Ta có:\(\dfrac{3a-2b}{5}=\dfrac{2c-5a}{3}=\dfrac{5b-3c}{2}\)

\(\Rightarrow\dfrac{15a-10b}{25}=\dfrac{6c-15a}{9}=\dfrac{5b-3c}{2}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{15a-10b}{25}=\dfrac{6c-15a}{9}=\dfrac{15a-10b+6c-15a}{25+9}\)=\(\dfrac{-10b+6c}{34}=\dfrac{-5b+3c}{17}\)

\(\Rightarrow\dfrac{-5b+3c}{17}=\dfrac{5b-3c}{2}\Rightarrow5b-3c=0\)

=> 5b=3c =>\(\left\{{}\begin{matrix}b=\dfrac{3}{5}c\\a=\dfrac{2}{5}c\end{matrix}\right.\)

=>\(\dfrac{3}{5}c+\dfrac{2}{5}c+c=-50\)

=> \(c\left(\dfrac{3}{5}+\dfrac{2}{5}+1\right)=-50\)

=> 2c = -50

=> c= -25

=>\(\left\{{}\begin{matrix}b=-25.\dfrac{3}{5}=-15\\a=-25.\dfrac{2}{5}=-10\end{matrix}\right.\)

Vậy a= -10; b= -15; c= -25

28 tháng 1 2019

Vi 8x = 5y , 7y = 12z

=>\(\left\{{}\begin{matrix}\dfrac{x}{5}=\dfrac{y}{8}\\\dfrac{y}{12}=\dfrac{z}{7}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{x}{60}=\dfrac{y}{96}\\\dfrac{y}{96}=\dfrac{z}{56}\end{matrix}\right.\)

=> \(\dfrac{x}{60}=\dfrac{y}{96}=\dfrac{z}{56}\)
Ap dung tinh chat day ti so bang nhau co
\(\dfrac{x}{60}=\dfrac{y}{96}=\dfrac{z}{56}=\dfrac{x+y+z}{60+96+56}=\dfrac{-318}{212}=\dfrac{-3}{2}\)
\(\dfrac{x}{60}=\dfrac{-3}{2}\Rightarrow x=60.\dfrac{-3}{2}=-90\)
\(\dfrac{y}{96}=\dfrac{-3}{2}\Rightarrow y=96.\dfrac{-3}{2}=-144\)
\(\dfrac{z}{56}=\dfrac{-3}{2}\Rightarrow z=56.\dfrac{-3}{2}=-84\)
Vay x= -90, y= -144 va z=-84

c: =>|x-2009|=2009-x

=>x-2009<=0

=>x<=2009

d: =>2x-1=0 và y-2/5=0 và x+y-z=0

=>x=1/2 và y=2/5 và z=x+y=1/2+2/5=9/10

a: 8x=5y; 7y=12z

=>x/5=y/8; y/12=z/7

=>x/15=y/24=z/14

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{15}=\dfrac{y}{24}=\dfrac{z}{14}=\dfrac{x+y+z}{15+24+14}=-\dfrac{318}{53}=-6\)

=>x=-90; y=-144; z=-84

16 tháng 12 2017

\(\left(2x-1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y-z\right|\ge0\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{2}{5}\\z=\dfrac{9}{10}\end{matrix}\right.\)

9 tháng 10 2016

a.  x=1      y= -3

b.  x=5      y=7/2

c.  x= -1    y= -1/2

d.  x=1/4   y= 1/4

16 tháng 10 2016

a) x = 1    

y = -3

b) x = 5

y = 7/2

c) x = -1

y = -1/2

d) x = 1/4 

y = 1/4

nha bn

24 tháng 9 2023

2023 =))

20 tháng 10 2017

Ta luôn có :|x-2009|\(\ge\)0(1)

Mà :2009-|x-2009|=x nên 2009\(\ge\)x(2)

(1)(2) nên ta có x \(\in\){0;1;2;3;4;5;...;2009}

18 tháng 6 2017

Bài 1:

a, \(2y.\left(y-\dfrac{1}{7}\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}2y=0\\y-\dfrac{1}{7}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=0\\y=\dfrac{1}{7}\end{matrix}\right.\)

Vậy \(y\in\left\{0;\dfrac{1}{7}\right\}\)

b, \(\dfrac{-2}{5}+\dfrac{2}{3}y+\dfrac{1}{6}y=\dfrac{-4}{15}\)

\(\Rightarrow\dfrac{5}{6}y=\dfrac{-4}{15}+\dfrac{2}{5}\)

\(\Rightarrow\dfrac{5}{6}y=\dfrac{2}{15}\)

\(\Rightarrow y=\dfrac{4}{25}\)

Vậy \(y=\dfrac{4}{25}\)

Chúc bạn học tốt!!!

18 tháng 6 2017

Bài 1:

a, \(2y\left(y-\dfrac{1}{7}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2y=0\\y-\dfrac{1}{7}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=\dfrac{1}{7}\end{matrix}\right.\)

Vậy...

b, \(\dfrac{-2}{5}+\dfrac{2}{3}y+\dfrac{1}{6}y=\dfrac{-4}{15}\)

\(\Rightarrow\dfrac{5}{6}y=\dfrac{2}{15}\)

\(\Rightarrow y=\dfrac{4}{25}\)

Vậy...

Bài 2:

a, \(x\left(x-\dfrac{4}{7}\right)>0\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x-\dfrac{4}{7}>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x< 0\\x-\dfrac{4}{7}< 0\end{matrix}\right.\)

\(\Rightarrow x>\dfrac{4}{7}\left(x\ne0\right)\) hoặc \(x< \dfrac{4}{7}\left(x\ne0\right)\)

Vậy...

Các phần còn lại tương tự nhé

27 tháng 11 2017

a)

\(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|=-\dfrac{1}{4}-y\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2}-\dfrac{1}{3}+x=-\dfrac{1}{4}-y\\\dfrac{1}{2}-\dfrac{1}{3}+x=\dfrac{1}{4}+y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y=-\dfrac{5}{12}\\x-y=\dfrac{1}{12}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{6}\\y=-\dfrac{1}{4}\end{matrix}\right.\)

b)\(\left|x-y\right|+\left|y+\dfrac{9}{25}\right|=0\)

ta thấy : \(\left|x-y\right|\ge0\\ \left|y+\dfrac{9}{25}\right|\ge0\)\(\Rightarrow\left|x-y\right|+\left|y+\dfrac{9}{25}\right|\ge0\)

đẳng thửc xảy ra khi : \(\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Rightarrow x=y=-\dfrac{9}{25}\)

vậy \(\left(x;y\right)=\left(-\dfrac{9}{25};-\dfrac{9}{25}\right)\)

27 tháng 11 2017

c) \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\)

ta thấy \(\left(\dfrac{1}{2}x-5\right)^{20}\:và\:\left(y^2-\dfrac{1}{4}\right)^{10}\) là các lũy thừa có số mũ chẵn

\(\Rightarrow\:\)\(\left(\dfrac{1}{2}x-5\right)^{20}\ge0\\ \left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)\(\Rightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)

đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=10\\\left[{}\begin{matrix}y=-\dfrac{1}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

vậy cặp số x,y cần tìm là \(\left(10;\dfrac{1}{2}\right)\:hoặc\:\left(10;-\dfrac{1}{2}\right)\)

d)

\(\left|x\left(x^2-\dfrac{5}{4}\right)\right|=x\\ \Leftrightarrow x\left(x^2-\dfrac{5}{4}\right)=x\left(vì\:x\ge0\right)\\ \Leftrightarrow x\left(x^2-\dfrac{9}{4}\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x^2-\dfrac{9}{4}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)

vậy x cần tìm là \(-\dfrac{3}{2};0;\dfrac{3}{2}\)

e)\(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)

ta thấy: \(x^2\ge0;\left(y-\dfrac{1}{10}\right)^4\ge0\)

\(\Rightarrow x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\)

đẳng thức xảy ra khi: \(\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)

vậy cặp số cần tìm là \(0;\dfrac{1}{10}\)

10 tháng 3 2020

mình chỉ biết làm 2 câu b and c thôi bạn thông cảm nha

Tìm x,y,z

b,\(\left(x+\frac{1}{2}\right)^2=\frac{81}{64}\)

\(\frac{81}{64}=\left(\frac{9}{8}\right)^2hoặc\frac{81}{64}=\left(-\frac{9}{8}\right)^2\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2=\left(\frac{9}{8}\right)^2hoặc\left(x+\frac{1}{2}\right)^2=\left(-\frac{9}{8}\right)^2\)

+TH1: \(\left(x+\frac{1}{2}\right)^2=\left(\frac{9}{8}\right)^2\)

\(\Rightarrow x+\frac{1}{2}=\frac{9}{8}\)

\(x=\frac{9}{8}-\frac{1}{2}\)

\(x=\frac{9-4}{8}\)

\(x=\frac{5}{8}\)

+TH2:\(\left(x+\frac{1}{2}\right)^2=\left(-\frac{9}{8}\right)^2\)

\(\Rightarrow x+\frac{1}{2}=-\frac{9}{8}\)

\(x=-\frac{9}{8}-\frac{1}{2}\)

\(x=\frac{-9-4}{8}\)

\(x=\frac{-13}{8}\)

Vậy x= \(\frac{5}{8}\)hoặc x=\(\frac{-13}{8}\)

c, \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)\(x^2-2y^2+z^2\)

Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)\(\Leftrightarrow\)\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\Rightarrow\frac{x^2}{4}=\frac{2y^2}{18}=\frac{z^2}{25}\)

- Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{4}=\frac{2y^2}{18}=\frac{z^2}{25}=\frac{x^2-2y^2+z^2}{4-18+25}=\frac{44}{11}=4\)

- Do đó :

\(\frac{x^2}{4}=4\Leftrightarrow\frac{x}{2}=4\Rightarrow x=4.2=8\)

\(\frac{2y^2}{18}=4\Leftrightarrow\frac{y^2}{9}=4\Rightarrow\frac{y}{3}=4\Rightarrow y=4.3=12\)

\(\frac{z^2}{25}=4\Leftrightarrow\frac{z}{5}=4\Rightarrow z=4.5=20\)

vậy x = 8 , y= 12 ,z=20

2 tháng 9 2018

a) \(\sqrt{3-x}\)=5

=>(\(\sqrt{3-x}\))2=52

=>3-x=25

=>x=-22