Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{x}{y}-1\right).\left(\frac{y}{z}+1\right).\left(\frac{z}{x}-1\right)\)=\(\left(\frac{x-y}{y}\right).\left(\frac{y+z}{z}\right).\left(\frac{z-x}{x}\right)\)
ta có:x-y-z=0
\(\rightarrow\)x-y=z
\(\rightarrow\)y+z=x
\(\rightarrow\)z-x=-y
thay các số trên vào bt,ta đc:
\(\frac{z}{y}.\frac{x}{z}.\frac{-y}{x}\)= -1
Theo đề bài, ta có:
x(x + y + z) = -5; y(x + y + z) = 9; z(x + y + z) = 5
=> (x + y + z)(x + y + z) = -5 + 9 + 5 = 9
=> (x + y + z)2 = 9
=> x + y + z \(\in\){3; -3}
Với x + y + z = 3, ta có:
x = -5 : 3 = \(\frac{-5}{3}\)
y = 9 : 3 = 3
z = 5 : 3 = \(\frac{5}{3}\)
Với x + y + z = -3, ta có:
x = -5 : (-3) = \(\frac{5}{3}\)
y = 9 : (-3) = -3
z = 5 : (-3) = \(\frac{-5}{3}\)
Vậy x = \(\frac{-5}{3}\); y = 3 ; z = \(\frac{5}{3}\) hoặc x = \(\frac{5}{3}\); y = -3 ; z = \(\frac{-5}{3}\).
Ta có:
\(x\left(x+y+z\right)=\frac{15}{2}\)
\(y\left(x+y+z\right)=\frac{-5}{2}\)
\(z\left(x+y+z\right)=20\)
=>\(x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=\frac{15}{2}+\frac{-5}{2}+20\)
\(\left(x+y+z\right)\left(x+y+z\right)=\frac{15-5}{2}+20\)
\(\left(x+y+z\right)^2=\frac{10}{2}+20\)
\(\left(x+y+z\right)^2=5+20\)
\(\left(x+y+z\right)^2=25\)
=>x+y+z=5 hoặc x+y+x=-5
Với x+y+z=5
=>\(x.5=\frac{15}{2}\)=>\(x=\frac{15}{2}.\frac{1}{5}=\frac{3}{2}\)
\(y.5=\frac{-5}{2}\)=>\(y=\frac{-5}{2}.\frac{1}{5}=\frac{-1}{2}\)
\(z.5=20\)=>\(z=\frac{20}{5}=4\)
Với x+y+z=-5
=>\(x.\left(-5\right)=\frac{15}{2}\)=>\(x=\frac{15}{2}.\frac{-1}{5}=\frac{-3}{2}\)
\(y.\left(-5\right)=\frac{-5}{2}\)=>\(y=\frac{-5}{2}.\frac{-1}{5}=\frac{1}{2}\)
\(z.\left(-5\right)=20\)=>\(z=\frac{20}{-5}=-4\)
Vậy \(x=\frac{3}{2},y=-\frac{1}{2},z=4\); \(x=-\frac{3}{2},y=\frac{1}{2},z=-4\)
Ta có:
\(x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=\frac{15}{2}+\left(-\frac{5}{2}\right)+20\)(Cộng vế với vế)
\(\Leftrightarrow\left(x+y+z\right)\left(x+y+z\right)=\frac{50}{2}=25\)
\(\Rightarrow\left(x+y+z\right)^2=25\Leftrightarrow x+y+z=\sqrt{25}=5\)
\(\Rightarrow\hept{\begin{cases}x.5=\frac{15}{2}\Rightarrow x=\frac{3}{2}\\y.5=-\frac{5}{2}\Rightarrow y=-\frac{1}{2}\\z.5=20\Rightarrow z=4\end{cases}}\)
Vậy \(x=\frac{3}{2};y=-\frac{1}{2};z=4\).