Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) ĐKXĐ: \(x,y\neq 0\).
Ta có: \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=\dfrac{1}{x}-\dfrac{1}{y}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=\dfrac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-y=0\\xy=-1\end{matrix}\right.\\2y=x^3+1\end{matrix}\right.\).
Với x - y = 0 suy ra x = y. Do đó \(2x=x^3+1\Leftrightarrow\left(x-1\right)\left(x^2+x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1=y\left(TMĐK\right)\\x=\pm\dfrac{\sqrt{5}-1}{2}=y\left(TMĐK\right)\end{matrix}\right.\).
Với xy = -1 suy ra \(y=-\dfrac{1}{x}\). Do đó \(x^3+\dfrac{2}{x}+1=0\Rightarrow x^4+x+2=0\). Phương trình vô nghiệm do \(x^4+x+2=\left(x^2-\dfrac{1}{2}\right)^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{2}>0\).
Vậy...
\(y=-2x+mx+m\Leftrightarrow y=\left(m-2\right)x+m\)
Đường thẳng đã cho song song với \(y=\sqrt{3}x\) khi và chỉ khi:
\(\left\{{}\begin{matrix}m-2=\sqrt{3}\\m\ne0\end{matrix}\right.\) \(\Leftrightarrow m=2+\sqrt{3}\)
\(A=\left(x-8\right)^2+2005\)
Ta có: \(\left(x-8\right)^2\ge0\forall x\in Z\)
\(\Rightarrow\left(x-8\right)^2+2005\ge2005\forall x\in Z\)
Dấu '=' xảy ra khi
\(\left(x-8\right)^2=0\Leftrightarrow x-8=0\Leftrightarrow x=8\)
Vậy: giá trị nhỏ nhất của biểu thức \(A=\left(x-8\right)^2+2005\) là 2005 khi x=8
\(B=\left(x-2\right)^2+\left(y-1\right)^2+3\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\in Z\)
\(\left(y-1\right)^2\ge0\forall y\in Z\)
Do đó: \(\left(x-2\right)^2+\left(y-1\right)^2\ge0\forall x,y\in Z\)
\(\Rightarrow\left(x-2\right)^2+\left(y-1\right)^2+3\ge3\forall x,y\in Z\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(B=\left(x-2\right)^2+\left(y-1\right)^2+3\) là 3 khi x=2 và y=1
\(C=\left|x-5\right|+\left(x-y\right)^2+10\)
Ta có: \(\left|x-5\right|\ge0\forall x\in Z\)
\(\left(x-y\right)^2\ge0\forall x,y\in Z\)
Do đó: \(\left|x-5\right|+\left(x-y\right)^2\ge0\forall x,y\in Z\)
⇒\(\left|x-5\right|+\left(x-y\right)^2+10\ge10\forall x,y\in Z\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left|x-5\right|=0\\\left(x-y\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-5=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\5-y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=5\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(C=\left|x-5\right|+\left(x-y\right)^2+10\) là 10 khi x=5 và y=5
\(D=\left|x-2\right|+\left|y+5\right|-10\)
Ta có: \(\left|x-2\right|\ge0\forall x\in Z\)
\(\left|y+5\right|\ge0\forall y\in Z\)
Do đó: \(\left|x-2\right|+\left|y+5\right|\ge0\forall x,y\in Z\)
\(\Rightarrow\left|x-2\right|+\left|y+5\right|-10\ge-10\forall x,y\in Z\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left|x-2\right|=0\\\left|y+5\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-5\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(D=\left|x-2\right|+\left|y+5\right|-10\) là -10 khi x=2 và y=-5
a: =>4y=4,8
=>y=1,2
b: =>10y=12,8
=>y=1,28