Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)
a) ĐKXD: \(x+2\ne0\)và \(x^2+4x+4\ne0\)và \(x^2-4\ne0\)và \(2-x\ne0\)
\(\Leftrightarrow x\ne-2\)và \(\left(x+2\right)^2\ne0\)và \(\left(x-2\right)\left(x+2\right)\ne0\)và \(x\ne2\)
\(\Leftrightarrow\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)
+) \(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)
\(=\left[\frac{2\left(x+2\right)}{\left(x+2\right)^2}-\frac{4}{\left(x+2\right)^2}\right]:\left[\frac{2}{\left(x-2\right)\left(x+2\right)}-\frac{x+2}{\left(x-2\right)\left(x+2\right)}\right]\)
\(=\frac{2x+4-4}{\left(x+2\right)^2}:\frac{2-x-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{2x}{\left(x+2\right)^2}:\frac{-x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{2x}{\left(x+2\right)^2}.\frac{\left(x-2\right)\left(x+2\right)}{-x}\)
\(=\frac{-2x+4}{x+2}\)
b) Ta có: x-1=3 <=> x=4 Thay vào A ta được:
\(\frac{-2.4-4}{4+2}=-2\)
c)
-2x+4 x+2 -2 -2x-4 - 8
Để \(A\in Z\Leftrightarrow8⋮x+2\)
\(\Leftrightarrow x+2\inƯ\left(8\right)=\left\{\pm1;\pm4;\pm8\right\}\)
Bạn làm nốt nha
1/
a/ \(a^2\left(a+1\right)+2a\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)
Vì a(a+1)(a+2) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3
Mà (2,3) = 1 nên a(a+1)(a+2) chia hết cho 6. Ta có đpcm
b/ Đề sai , giả sử với a = 3
c/ \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1>0\)
d/ \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
e/ \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1< 0\)
2/ a/ \(x^2-6x+11=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)
BT đạt giá trị nhỏ nhất bằng 2 tại x = 3
b/ \(-x^2+6x-11=-\left(x^2-6x+9\right)-2=-\left(x-3\right)^2-2\le-2\)
BT đạt giá trị lớn nhất bằng -2 tại x = 3
Đa thức có dạng x3m+1+x3n+2+1 thì có nhân tử là x2+x+1 ( với m,n thuộc N)
=> a=x , b=1
`đk:x ne 1`
`A in ZZ`
`=>x^2 vdots x-1`
`=>x^2-1+1 vdots x-1`
`=>(x-1)(x+1)+1 vdots x-1`
`=>1 vdots x-1`
`=>x-1 in Ư(1)={1,-1}`
`=>x in {0,2}`
Vậy `x in {0,2}` thì `A in ZZ`