\(2^{x-1}=16\)

b)\(\left(x-1\right)^{...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2019

a) \(2^{x-1}=16\)

\(\Rightarrow2^{x-1}=2^4\)

\(\Rightarrow x-1=4\)

\(\Rightarrow x=4+1\)

\(\Rightarrow x=5\)

Vậy \(x=5.\)

c) \(\left(x+20\right)^{100}+\left|y+4\right|=0\)

Ta có:

\(\left\{{}\begin{matrix}\left(x+20\right)^{100}\ge0\\\left|y+4\right|\ge0\end{matrix}\right.\forall x,y.\)

\(\Rightarrow\left(x+20\right)^{100}+\left|y+4\right|\ge0\) \(\forall x,y\)

\(\Rightarrow\left(x+20\right)^{100}+\left|y+4\right|=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x+20\right)^{100}=0\\\left|y+4\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+20=0\\y+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0-20\\y=0-4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-20\\y=-4\end{matrix}\right.\)

Vậy \(\left(x;y\right)\in\left\{-20;-4\right\}.\)

Chúc bạn học tốt!

24 tháng 12 2019

b)\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+6}\)

\(\Leftrightarrow\left(x-1\right)^{x+2}-\left(x-1\right)^{x+6}=0\)

\(\Leftrightarrow\left(x-1\right)^{x+2}.\left[1-\left(x-1\right)^4\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^{x+2}=0\\1-\left(x-1\right)^4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^4=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x-1=1\Rightarrow x=2\end{matrix}\right.\)

Vậy ...

Làm cho hết chớ .-.

AH
Akai Haruma
Giáo viên
29 tháng 7 2018

a)

Ta thấy \(\left\{\begin{matrix} |x+\frac{19}{5}|\geq 0\\ |y+\frac{1890}{1975}|\geq 0\\ |z-2005|\geq 0\end{matrix}\right., \forall x,y,z\in\mathbb{Z}\)

\(|x+\frac{19}{5}|+|y+\frac{1890}{1975}|+|z-2005|\geq 0\)

Do đó, để \(|x+\frac{19}{5}|+|y+\frac{1890}{1975}|+|z-2005|=0\) thì :

\(\left\{\begin{matrix} |x+\frac{19}{5}|= 0\\ |y+\frac{1890}{1975}|= 0\\ |z-2005|=0\end{matrix}\right.\Rightarrow x=\frac{-19}{5}; y=\frac{-1890}{1975}; z=2005\)

b) Giống phần a, vì trị tuyệt đối của một số luôn không âm nên để tổng các trị tuyệt đối bằng $0$ thì:

\(\left\{\begin{matrix} |x+\frac{3}{4}|=0\\ |y-\frac{1}{5}|=0\\ |x+y+z|=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=-\frac{3}{4}\\ y=\frac{1}{5}\\ z=-(x+y)=\frac{11}{20}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
29 tháng 7 2018

c) \(\frac{16}{2^x}=1\Rightarrow 16=2^x\)

\(\Leftrightarrow 2^4=2^x\Rightarrow x=4\)

d) \((2x-1)^3=-27=(-3)^3\)

\(\Rightarrow 2x-1=-3\)

\(\Rightarrow 2x=-2\Rightarrow x=-1\)

e) \((x-2)^2=1=1^2=(-1)^2\)

\(\Rightarrow \left[\begin{matrix} x-2=1\\ x-2=-1\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=3\\ x=1\end{matrix}\right.\)

f) \((x+\frac{1}{2})^2=\frac{4}{25}=(\frac{2}{5})^2=(\frac{-2}{5})^2\)

\(\Rightarrow \left[\begin{matrix} x+\frac{1}{2}=\frac{2}{5}\\ x+\frac{1}{2}=-\frac{2}{5}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-1}{10}\\ x=\frac{-9}{10}\end{matrix}\right.\)

g) \((x-1)^2=(x-1)^6\)

\(\Leftrightarrow (x-1)^6-(x-1)^2=0\)

\(\Leftrightarrow (x-1)^2[(x-1)^4-1]=0\)

\(\Rightarrow \left[\begin{matrix} (x-1)^2=0\\ (x-1)^4=1=(-1)^4=1^4\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=1\\ \left[\begin{matrix} x-1=-1\\ x-1=1\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=1\\ \left[\begin{matrix} x=0\\ x=2\end{matrix}\right.\end{matrix}\right.\)

Vậy \(x=\left\{0;1;2\right\}\)

7 tháng 12 2019

a, \(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)\(\Rightarrow\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)\(\Rightarrow x-\frac{1}{2}=\frac{1}{3}\)\(\Rightarrow x=\frac{5}{6}\)

b, \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+6}\)

\(\Rightarrow\left(x-1\right)^{x+2}-\left(x-1\right)^{x+6}=0\)

\(\Rightarrow\left(x-1\right)^{x+2}\left[1-\left(x-1\right)^4\right]=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\1-\left(x-1\right)^4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^4=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\\left(x-1\right)^4=1\end{cases}}\)

Giải: \(\left(x-1\right)^4=1\)\(\Rightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)

c, Vì \(\left(x+20\right)^{100}\ge0\)\(\forall x\inℝ\)\(\left|y+4\right|\ge0\)\(\forall y\inℝ\)

\(\Rightarrow\left(x+20\right)^{100}+\left|y+4\right|\ge0\)\(\forall x,y\inℝ\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+20=0\\y+4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-20\\y=-4\end{cases}}\)

d, \(2^{x-1}=16\)\(\Rightarrow2^{x-1}=2^4\)=> x - 1 = 4 => x = 5 

31 tháng 8 2017

Ta có : \(\frac{x+1}{x-4}>0\) 

Thì sảy ra 2 trường hợp 

Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4 

Vậy x > 4 

Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4 

Vậy x < (-1) . 

31 tháng 8 2017

Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)

Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)

Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)

10 tháng 11 2016

Bài 1:

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)

Ta thấy:

\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)

\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\frac{10}{11}=0\)

\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)

 

 

10 tháng 11 2016

Bài 2:

Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)

(x-1)^{x+2} =(x-1)^{x+6}

=> (x-1)^{x+6}-(x-1)^{x+2}=0

=> (x-1)^{x+2}[(x-1)^4-1]=0

=> (x-1)^{x+2}=0 hoặc (x-1)^4-1=0

+) (x-1)^{x+2}=0 => x = 1

+) (x-1)^4-1=0 => x-1=1 hoặc x-1=-1

=> x = 2 hoặc x = 0

Vậy x = 1 hoặc x = 2 hoặc x = 0

(x-1)^(x+2)=(x-1)^(x+6)

(x-1)^(x+2)-(x-1)^(x+6)=0

(x-1)^(x+2) . [1-(x-1)^4]=0

=> (x-1)^(x+2)=0 hoặc 1-(x-1)^4=0

    x-1=0                        (x-1)^4=1

    x=1                           x-1=1 hoặc x-1=-1

                                        x=2 hoặc x=0

vậy x \epsilon {0;1;2} 

a: \(\Leftrightarrow x\cdot\dfrac{1}{4}=\dfrac{1}{2}+\dfrac{1}{9}=\dfrac{11}{18}\)

hay \(x=\dfrac{11}{18}:\dfrac{1}{4}=\dfrac{11}{18}\cdot4=\dfrac{44}{18}=\dfrac{22}{9}\)

d: =>x+1;x-2 khác dấu

Trường hợp 1: \(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Leftrightarrow-1< x< 2\)

Trường hợp 2: \(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Leftrightarrow2< x< -1\left(loại\right)\)

e: =>x-2>0 hoặc x+2/3<0

=>x>2 hoặc x<-2/3

Bài 1:...
Đọc tiếp

Bài 1: Tính

a. \(\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)+\left(1+\frac{1}{4\cdot6}\right).....\left(1+\frac{1}{99\cdot101}\right)\)

b. \(\left[\sqrt{0,64}+\sqrt{0,0001}-\sqrt{\left(-0,5\right)^2}\right]\div\left[3\cdot\sqrt{\left(0,04\right)^2}-\sqrt{\left(-2\right)^4}\right]\)

c. \(\frac{5.4^{15}\cdot9^9-4.3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}-\frac{2^{19}\cdot6^{15}-7\cdot6^{10}\cdot2^{20}\cdot3^6}{9\cdot6^{19}\cdot2^9-4\cdot3^{17}\cdot2^{26}}+0,\left(6\right)\)

Bài 2: Tìm x, y, z biết :
a. \(\left(x-10\right)^{1+x}=\left(x-10\right)^{x+2009}\left(x\in Z\right)\)

b. \(\left|x-2007\right|+\left|x-2008\right|+\left|y-2009\right|+\left|x-2010\right|=3\left(x,y\in N\right)\) 

c. \(25-y^2=8\left(x-2009\right)^2\left(x,y\in Z\right)\)

d. \(2008\left(x-4\right)^2+2009\left|x^2-16\right|+\left(y+1\right)^2\le0\)

e. \(2x=3y\) ; \(4z=5x\) và \(3y^2-z^2=-33\)

Bài 3: Chứng minh rằng

a. \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2009^2}>\frac{1}{2009}\)

b. \(\left[75\cdot\left(4^{2008}+4^{2007}+4^{2006}+...+4+1\right)+25\right]⋮100\)

Bài 4: 

a. Tìm giá trị nhỏ nhất của biểu thức : \(M=\left(x^2+2\right)+\left|x+y-2009\right|+2005\)

b. So sánh: \(31^{11}\) và \(\left(-17\right)^{14}\)

c. So sánh: \(\left(\frac{9}{11}-0,81\right)^{2012}\) và \(\frac{1}{10^{4024}}\)

1

Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)

           \(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)

          \(=100.\frac{2}{101}=\frac{200}{101}\)

5 tháng 8 2019

Làm đầy đủ hộ mình, mai nộp rùi

5 tháng 8 2019

a) \(5^{3x+1}=25^{x+2}\)

\(\Leftrightarrow5^{3x+1}=\left(5^2\right)^{x+2}\)

\(\Leftrightarrow5^{3x+1}=5^{2x+4}\)

\(\Leftrightarrow3x+1=2x+4\)

\(\Leftrightarrow3x-2x=4-1\)

\(\Leftrightarrow x=3\)

27 tháng 11 2017

a)

\(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|=-\dfrac{1}{4}-y\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2}-\dfrac{1}{3}+x=-\dfrac{1}{4}-y\\\dfrac{1}{2}-\dfrac{1}{3}+x=\dfrac{1}{4}+y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y=-\dfrac{5}{12}\\x-y=\dfrac{1}{12}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{6}\\y=-\dfrac{1}{4}\end{matrix}\right.\)

b)\(\left|x-y\right|+\left|y+\dfrac{9}{25}\right|=0\)

ta thấy : \(\left|x-y\right|\ge0\\ \left|y+\dfrac{9}{25}\right|\ge0\)\(\Rightarrow\left|x-y\right|+\left|y+\dfrac{9}{25}\right|\ge0\)

đẳng thửc xảy ra khi : \(\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Rightarrow x=y=-\dfrac{9}{25}\)

vậy \(\left(x;y\right)=\left(-\dfrac{9}{25};-\dfrac{9}{25}\right)\)

27 tháng 11 2017

c) \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\)

ta thấy \(\left(\dfrac{1}{2}x-5\right)^{20}\:và\:\left(y^2-\dfrac{1}{4}\right)^{10}\) là các lũy thừa có số mũ chẵn

\(\Rightarrow\:\)\(\left(\dfrac{1}{2}x-5\right)^{20}\ge0\\ \left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)\(\Rightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)

đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=10\\\left[{}\begin{matrix}y=-\dfrac{1}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

vậy cặp số x,y cần tìm là \(\left(10;\dfrac{1}{2}\right)\:hoặc\:\left(10;-\dfrac{1}{2}\right)\)

d)

\(\left|x\left(x^2-\dfrac{5}{4}\right)\right|=x\\ \Leftrightarrow x\left(x^2-\dfrac{5}{4}\right)=x\left(vì\:x\ge0\right)\\ \Leftrightarrow x\left(x^2-\dfrac{9}{4}\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x^2-\dfrac{9}{4}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)

vậy x cần tìm là \(-\dfrac{3}{2};0;\dfrac{3}{2}\)

e)\(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)

ta thấy: \(x^2\ge0;\left(y-\dfrac{1}{10}\right)^4\ge0\)

\(\Rightarrow x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\)

đẳng thức xảy ra khi: \(\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)

vậy cặp số cần tìm là \(0;\dfrac{1}{10}\)