Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét nào:)
Từ giả thiết suy ra x + y + z > 3
Ta có: \(P=2x^2+xy+2y^2=\frac{5}{4}\left(x+y\right)^2+\frac{3}{4}\left(x-y\right)^2\ge\frac{5}{4}\left(x+y\right)^2\)
Suy ra \(\sqrt{2x^2+xy+y^2}\ge\sqrt{\frac{5}{4}}.\left(x+y\right)=\frac{\sqrt{5}}{2}\left(x+y\right)\)
Tương tự hai BĐT còn lại và cộng theo vế: \(P\ge\sqrt{5}\left(x+y+z\right)\ge3\sqrt{5}\)
Đẳng thức xảy ra khi x = y = z = 1
Is it right?!?
Vì \(x+y+z=2\)
Ta có \(\sqrt{2x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x^2+xy\right)+\left(xz+yz\right)}=\sqrt{\left(x+y\right)\left(x+z\right)}\)
\(\le\frac{x+y+x+z}{2}=\frac{2x+y+z}{2}\)
Tương tự \(\sqrt{2y+zx}\le\frac{x+2y+z}{2}\) và \(\sqrt{2z+xy}\le\frac{x+y+2z}{2}\)
Do đó \(P\le\frac{2x+y+z}{2}+\frac{x+2y+z}{2}+\frac{x+y+2z}{2}=\frac{4\left(x+y+z\right)}{2}=\frac{4.2}{2}=4\)
Vậy \(P\le4\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x+y=x+z\\y+x=y+z\\z+x=z+y\end{cases}}\) và x+y+z=2 \(\Leftrightarrow\) \(x=y=z=\frac{2}{3}\)
b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz)
\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)
a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)
\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky)
\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)
\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)
Dấu "=" xảy ra <=> x = y = z = 2/3
chứng minh \(\ge\)\(\sqrt{5}\), mk viết thiếu mất nha
Áp dụng BĐT AM-GM ta có:
\(x^2+y^2\ge2xy\Rightarrow2\left(x^2+y^2\right)\ge x^2+y^2+2xy=\left(x+y\right)^2\)
\(\Rightarrow\sqrt{2x^2+xy+2y^2}=\sqrt{\dfrac{\left(x+y\right)^2}{2}+\dfrac{3\left(x^2+y^2\right)}{2}}\)
\(\ge\sqrt{\dfrac{5\left(x+y\right)^2}{4}}=\dfrac{\sqrt{5}\left(x+y\right)}{2}\). Tương tự ta có:
\(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}\left(y+z\right)}{2};\sqrt{2z^2+xz+2x^2}\ge\dfrac{\sqrt{5}\left(x+z\right)}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{\sqrt{5}\left(x+y\right)}{2}+\dfrac{\sqrt{5}\left(y+z\right)}{2}+\dfrac{\sqrt{5}\left(x+z\right)}{2}\)
\(=\dfrac{\sqrt{5}\cdot2\left(x+y+z\right)}{2}=\dfrac{\sqrt{5}\cdot2}{2}=\sqrt{5}=VP\)
Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)