\(\inℕ^∗\) biết: \(\left(1+\frac{1}{x}\right).\left(1+\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(1+\frac{1}{x}\right).\left(1+\frac{1}{y}\right).\left(1+\frac{1}{z}\right)=2\)

Giả sử \(x\ge y\ge z>0\)

\(\Rightarrow\frac{1}{x}\le\frac{1}{y}\le\frac{1}{z}\)

\(\Rightarrow1+\frac{1}{x}\le1+\frac{1}{y}\le1+\frac{1}{z}\)

\(\Rightarrow\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1+\frac{1}{z}\right)\le \left(1+\frac{1}{z}\right)^3\)

\(\Rightarrow2\le\left(1+\frac{1}{z}\right)^3\)

\(\Rightarrow1+\frac{1}{z}\ge\sqrt[3]{2}\)
\(\Rightarrow\frac{1}{z}\ge\sqrt[3]{2}-1\)

\(\Rightarrow z\le\frac{1}{\sqrt[3]{2}-1}< 4\)

Mà z thuộc N* \(\Rightarrow z\in\left\{1;2;3\right\}\)

TH1 : \(z=1\)

\(\Rightarrow\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1+\frac{1}{1}\right)=2\)

\(\Rightarrow\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)=1\)

Ta có : \(1+\frac{1}{x}>1;1+\frac{1}{y}>1\)\(\Rightarrow\left(\frac{1}{x}+1\right)\left(1+\frac{1}{y}\right)>1\left(lọai\right)\)

TH2 : \(z=2\)

\(\Rightarrow\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1+\frac{1}{2}\right)=2\)

\(\Rightarrow\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)=\frac{4}{3}\)

Ta có : \(\left(1+\frac{1}{y}\right)^2\ge\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)=\frac{4}{3}\)

\(\Rightarrow1+\frac{1}{y}\ge\sqrt{\frac{4}{3}}\)

\(\Rightarrow\frac{1}{y}\ge\frac{2\sqrt{3}}{3}-1\)

\(\Rightarrow y\le\frac{1}{\frac{2\sqrt{3}}{3}-1}< 7\)

\(\Rightarrow y\in\left\{1;2;3;4;5;6\right\}\)

Nếu y = 1 \(\Rightarrow\left(1+1\right)\left(1+\frac{1}{x}\right)=\frac{4}{3}\)

= > x = -3 ( loại )

Nếu y = 2 \(\Rightarrow\left(1+\frac{1}{2}\right)\left(1+\frac{1}{x}\right)=\frac{4}{3}\)

= > x = -9 ( loại )

Nếu y = 3 \(\Rightarrow\left(1+\frac{1}{3}\right)\left(1+\frac{1}{x}\right)=\frac{4}{3}\)

= > \(x\in\varnothing\)

Nếu y = 4 \(\Rightarrow\left(1+\frac{1}{4}\right)\left(1+\frac{1}{x}\right)=\frac{4}{3}\)

= > x = 15 ( tm )

Nếu y = 5 \(\Rightarrow\left(1+\frac{1}{5}\right)\left(1+\frac{1}{x}\right)=\frac{4}{3}\)

= > x = 9 ( tm )

Nếu y = 6 \(\Rightarrow\left(1+\frac{1}{6}\right)\left(1+\frac{1}{x}\right)=\frac{4}{3}\)

= > x = 7 ( tm )

TH3 : z =3 thì bạn làm tương tự nhé

18 tháng 10 2019

ADTC dãy tỉ số bằng nhau đc ko hay pk mấy cái cosi hay cot , tan , .... 

18 tháng 12 2018

Hướng dẫn :\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)

Thay vào:\(x^2+2yz=x^2+yz+yz=x^2+yz-xy-zx=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)

Tương tự thay vào mà quy đồng

24 tháng 7 2017

a) \(\frac{x+1}{2x+6}\)+\(\frac{2x+3}{x\left(x+3\right)}\)

\(\frac{x+1}{2\left(x+3\right)}\)\(\frac{2x+3}{x\left(x+3\right)}\)

\(\frac{x\left(x+1\right)}{2x\left(x+3\right)}\)\(\frac{2\left(2x+3\right)}{2x\left(x+3\right)}\)

\(\frac{x^2+x+4x+6}{2x\left(x+3\right)}\)

\(\frac{x^2+5x+6}{2x\left(x+3\right)}\)

\(\frac{\left(x+2\right)\left(x+3\right)}{2x\left(x+3\right)}\)

\(\frac{x+2}{2x}\)

b) \(\frac{x-1}{x}\)\(\frac{x+2}{2}\)

\(\frac{2\left(x-1\right)}{2x}\)\(\frac{x\left(x+2\right)}{2x}\)

\(\frac{2x-2+x^2+2x}{2x}\)

\(\frac{x^2+4x-2}{2x}\)

c) \(\frac{1}{x+y}\)\(\frac{-1}{x-y}\)\(\frac{2x}{x^2+y^2}\)

\(\frac{\left(x-y\right)\left(x^2+y^2\right)}{\left(x^2+y^2\right)\left(x-y\right)\left(x+y\right)}\)+\(\frac{-\left(x+y\right)\left(x^2+y^2\right)}{\left(x^2+y^2\right)\left(x-y\right)\left(x+y\right)}\)\(\frac{2x\left(x-y\right)\left(x+y\right)}{\left(x^2+y^2\right)\left(x-y\right)\left(x+y\right)}\)

\(\frac{x^3+xy^2-x^2y-y^3-x^3-xy^2-xy^2-y^3+2x^3+2x^2y-2x^2y+2xy^2}{\left(x^2+y^2\right)\left(x^2-y^2\right)}\)

\(\frac{2x^3+xy^2-x^2y-2y^3}{\left(x^2+y^2\right)\left(x^2-y^2\right)}\)

\(\frac{\left(2x^3-2y^3\right)-\left(x^2y-xy^2\right)}{\left(x^2+y^2\right)\left(x^2-y^2\right)}\)

\(\frac{2\left(x-y\right)\left(x^2+xy+y^2\right)-xy\left(x-y\right)}{\left(x^2+y^2\right)\left(x^2-y^2\right)}\)

\(\frac{\left(x-y\right)\left(2x^2+2xy+2y^2-xy\right)}{\left(x^2+y^2\right)\left(x^2-y^2\right)}\)

\(\frac{2x^2+xy+2y^2}{\left(x+y\right)\left(x^2+y^2\right)}\)

e) = \(\frac{3x^2-6xy+3y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(\frac{3\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

=\(\frac{3x-3y}{x^2+xy+y^2}\)

( Mình bận rồi, lát làm câu d nhé)

2 tháng 1 2017

Hay quớ ak! Mơn m nhìu nha ný! <3 <3 <3 (not thả thính =))))

3 tháng 1 2017

chỉ thả tai thui

6 tháng 2 2017

1)\(A=\frac{b\left(2a\left(a+5b\right)+\left(a+5b\right)\right)}{a-3b}.\frac{a\left(a-3b\right)}{ab\left(a+5b\right)}=\frac{b\left(a+5b\right)\left(2a+1\right).a\left(a-3b\right)}{\left(a-3b\right).ab\left(a+5b\right)}\)

\(A=2a+1\)=>lẻ với mọi a thuộc z=> dpcm 

2) từ: x+y+z=1=> xy+z=xy+1-x-y=x(y-1)-(y-1)=(y-1)(x-1)

tường tự: ta có tử của Q=(x-1)^2.(y-1)^2.(z-1)^2=[(x-1)(y-1)(z-1)]^2=[-(z+y).-(x+y).-(x+y)]^2=Mẫu=> Q=1

3) kiểm tra lại xem đề đã chuẩn chưa

29 tháng 8 2017

cha ôi rk mà cx ko bt

3 tháng 10 2017

khó vcl