Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{x}{19}=\frac{y}{21}\) và 2x - y = 34
Ta có : \(\frac{x}{19}=\frac{y}{21}\Leftrightarrow\frac{2x}{38}=\frac{y}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
Vậy : \(\hept{\begin{cases}\frac{x}{19}=2\\\frac{y}{21}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=38\\y=42\end{cases}}\)
\(b,\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và x + y + z = 60
Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{60}{12}=5\)
Vậy : \(\hept{\begin{cases}\frac{x}{3}=5\\\frac{y}{4}=5\\\frac{z}{5}=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=15\\y=20\\z=25\end{cases}}\)
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)
=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5
=> x-1/2 = 5 => x-1=5 => x=6
y-2/3 = 5 => y-2 = 15 => y =17
z-3/4=5 => z-3=20 => z=23
#)Giải :
a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)
\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)
Vậy x = 45; y = 60; z = 84
b) Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)
\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)
\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)
Thay (1) vào (+) ta được :
\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)
\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)
Thay (2) và (+2) ta được :
\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)
\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)
Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)
Mà \(xyz=810\Rightarrow30k^3=810\)
\(\Rightarrow k^3=27\)
\(\Rightarrow k=3\)
Thay vào tìm x,,z.
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\ \frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1);(2) Suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tĩ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{3y}{36}=\frac{z}{15}=\frac{2x-3y+z}{18-36+15}=\frac{6}{-3}=-2\)
Suy ra
x = (-2) . 9 = -18
y = (-2) . 12 = -24
z = (-2) . 15 = -30
Áp dụng tính chất dãy tỷ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Suy ra
x = 2 . 10 = 20
y = 2 . 6 = 12
z = 2 . 21 = 42
Ta có : \(\frac{x-1}{5}=\frac{y-2}{2}=\frac{z-2}{3}=\frac{2y-4}{4}=\frac{x-1+2y-4-\left(z-2\right)}{5+4-3}=\frac{x-1+2y-4-z+2}{6}\)
\(=\frac{x+2y-z-3}{6}=\frac{3}{6}=\frac{1}{2}\)
Nên : \(\frac{x-1}{5}=\frac{1}{2}\Rightarrow x-1=\frac{5}{2}\Rightarrow x=\frac{7}{2}\)
\(\frac{y-2}{2}=\frac{1}{2}\Rightarrow y-2=1\Rightarrow y=3\)
\(\frac{z-2}{3}=\frac{1}{2}\Rightarrow z-2=\frac{3}{2}\Rightarrow z=\frac{7}{2}\)
Vậy ,,,,,,,,,,,,,,,,,,
a) \(\frac{x}{y}=\frac{7}{3}\) => \(\frac{x}{7}=\frac{y}{3}\) => \(\frac{5x}{35}=\frac{2y}{6}=\frac{5x-2y}{35-6}=\frac{87}{29}=3\)
=> \(\begin{cases}x=21\\y=9\end{cases}\)
Câu b làm tương tự
Chúc bạn làm bài tốt
c) \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) => \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\) => \(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
=> \(\begin{cases}x=1\\y=2\\z=3\end{cases}\)
d) Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{12}\)
=> \(\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)
=> 6x = 12
=> x=2
Thay vào đề bài ta được y = 3
Chúc bạn làm bài tốt
a)Vì \(\frac{x}{19}=\frac{y}{21}\Rightarrow\frac{2x}{38}=\frac{y}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\Leftrightarrow\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{19}=2\\\frac{y}{21}=2\end{cases}\Rightarrow\hept{\begin{cases}x=38\\y=42\end{cases}}}\)
b)Vì x + y + z =18
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\Leftrightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{18}{9}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=2\\\frac{y}{3}=2\\\frac{z}{4}=2\end{cases}\Rightarrow}\hept{\begin{cases}x=4\\y=6\\z=8\end{cases}}\)
c)\(2^x+2^{x+3}=144\)
\(\Leftrightarrow2^x+2^x.2^3=144\)
\(\Leftrightarrow2^x.\left(2^3+1\right)=144\)
\(\Leftrightarrow2^x.9=144\)
\(\Leftrightarrow2^x=16=2^4\)
Vậy x=4
a) \(\frac{x}{19}=\frac{y}{21}=\frac{2x}{38}\)
Áp dụng tính chất dãy tỉ số bằng nhau. ta có:
\(\frac{x}{19}=\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
Từ \(\frac{x}{19}=2\Rightarrow x=2.19=38\)
\(\frac{y}{21}=2\Rightarrow y=2.21=42\)
Vậy x = 38 ; y=42
c) \(2^x+2^{x+3}=144\)
\(\Rightarrow2^x+2^x\times2^3=144\)
\(\Rightarrow2^x.\left(1+2^3\right)=144\)
\(\Rightarrow2^x.9=144\)
\(\Rightarrow2^x=144\div9=16=2^4\)
\(\Rightarrow x=4\)
Vậy x = 4