K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 10 2021

\(x^3+x\ge2\sqrt{x^4}=2x^2\)

Tương tự:

\(y^3+y\ge2y^2\)

\(z^3+z\ge2z^2\)

Cộng vế:

\(x^3+y^3+z^3+x+y+z\ge2\left(x^2+y^2+z^2\right)=6\)

Dấu "=" xảy ra khi \(x=y=z=1\)

22 tháng 10 2021

giup e (e cam on)

https://hoc24.vn/cau-hoi/cho-ham-so-yfleftxright-x24x5tim-m-defleftleftxrightright-leftm1rightleftfleftxrightrightm0-co-8-nghiem-phan-biet.2499562346765

 

28 tháng 5 2017

17 tháng 11 2019

\(xz=y^2\Rightarrow2xz=2y^2\)

\(x^2+z^2+99=7y^2\)

\(\Rightarrow x^2+z^2+2xz+99=7y^2+2y^2\)

\(\Rightarrow\left(x+z\right)^2+99=9y^2=\left(3y\right)^2\)

\(\Rightarrow\left(x+z\right)^2-\left(3y\right)^2=-99\)

\(\Rightarrow\left(x+z+3y\right)\left(x+z-3y\right)=-99=-\left(9.11\right)=-\left(3.33\right)=-\left(99.1\right)\)

Gọi: \(x+z=a;3y=b\)

\(\Rightarrow\left(a+b\right)\left(a-b\right)=-\left(99.1\right)=-\left(3.33\right)=-\left(99.1\right)\)

Trường hợp 1: \(\left(a+b\right)\left(a-b\right)=-\left(9.11\right)\)

\(\Rightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}a+b=11\\a-b=-9\end{matrix}\right.\\\left\{{}\begin{matrix}a+b=9\\a-b=-11\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=1\\b=10\end{matrix}\right.\\\left\{{}\begin{matrix}a=-1\\b=10\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+z=1\\3y=10\end{matrix}\right.\\\left\{{}\begin{matrix}x+z=-1\\3y=10\end{matrix}\right.\end{matrix}\right.\) \(\left(ktm\right)\)

Trường hợp 2: \(\left(a+b\right)\left(a-b\right)=-\left(9.11\right)\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a+b=33\\a-b=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=15\\b=18\end{matrix}\right.\\\Rightarrow\left\{{}\begin{matrix}x+z=15\\y=6\Rightarrow xz=6^2=36\end{matrix}\right.\\\left\{{}\begin{matrix}a+b=3\\a-b=-33\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+z=15\\3y=18\end{matrix}\right.\\\left\{{}\begin{matrix}x=12\\y=6\\z=3\end{matrix}\right.\\\left\{{}\begin{matrix}x+z=-15\\3y=18\end{matrix}\right.\end{matrix}\right.\)

Trường hợp 3: Không thỏa mãn

Vậy \(x=12;y=6;z=3\) hoặc \(x=3;y=6;z=12\)

12 tháng 7 2019

Ta có: \(\left(2x-y\right)^2\ge0\); \(\left(y-2\right)^2\ge0\); \(\sqrt{\left(x+y+z\right)^2}=\left|x+y+z\right|\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}2x-y=0\\y-2=0\\x+y+z=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=?\\y=?\\z=?\end{matrix}\right.\)

Bạn tự giải :D

AH
Akai Haruma
Giáo viên
20 tháng 6 2019

Lời giải:

Áp dụng PP tìm điểm rơi và BĐT Cauchy cho các số dương:

\(x^3+\left(\frac{\sqrt{2}}{2\sqrt{2}+3\sqrt{3}+1}\right)^3+\left(\frac{\sqrt{2}}{2\sqrt{2}+3\sqrt{3}+1}\right)^3\geq 3x\left(\frac{\sqrt{2}}{2\sqrt{2}+3\sqrt{3}+1}\right)^2\)

\(y^3+\left(\frac{\sqrt{3}}{2\sqrt{2}+3\sqrt{3}+1}\right)^3+\left(\frac{\sqrt{3}}{2\sqrt{2}+3\sqrt{3}+1}\right)^3\geq 3y\left(\frac{\sqrt{3}}{2\sqrt{2}+3\sqrt{3}+1}\right)^2\)

\(z^3+\left(\frac{1}{2\sqrt{2}+3\sqrt{3}+1}\right)^3+\left(\frac{1}{2\sqrt{2}+3\sqrt{3}+1}\right)^3\geq 3z\left(\frac{1}{2\sqrt{2}+3\sqrt{3}+1}\right)^2\)

Cộng theo vế:

\(P+\frac{2}{(2\sqrt{2}+3\sqrt{3}+1)^2}\geq \frac{3}{(2\sqrt{2}+3\sqrt{3}+1)^2}(2x+3y+z)=\frac{3}{(2\sqrt{2}+3\sqrt{3}+1)^2}\)

\(\Rightarrow P\geq \frac{1}{(2\sqrt{2}+3\sqrt{3}+1)^2}\)

Vậy \(P_{\min}=\frac{1}{(2\sqrt{2}+3\sqrt{3}+1)^2}\)

AH
Akai Haruma
Giáo viên
19 tháng 12 2017

Lời giải:

Áp dụng công thức hằng đẳng thức:

\(x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\) ta có:

\(x^3+y^3+3xyz=z^3\)

\(\Leftrightarrow x^3+y^3+(-z)^3-3xy(-z)=0\)

\(\Leftrightarrow (x+y-z)(x^2+y^2+z^2-xy+xz+yz)=0\)

TH1: \(x+y-z=0\)

\(\Leftrightarrow z=x+y\)

Thay vào: \(z^3=2(2x+2y)^2=8(x+y)^2\)

\(\Leftrightarrow (x+y)^3=8(x+y)^2\)

\(\Leftrightarrow (x+y)^2(x+y-8)=0\)

Do x,y nguyên dương nên \((x+y)^2\neq 0\Rightarrow x+y-8=0\Rightarrow x+y=8\Rightarrow z=8\)

\(x+y=8\Rightarrow (x,y)=(1,7); (2;6); (3;5); (4;4)\) và các hoán vị tương ứng

TH2: \(x^2+y^2+z^2-xy+yz+xz=0\)

\(\Leftrightarrow \frac{(x-y)^2+(y+z)^2+(z+x)^2}{2}=0\)

\((x-y)^2; (y+z)^2; (z+x)^2\geq 0\Rightarrow (x-y)^2+(y+z)^2+(x+z)^2\geq 0\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} x-y=0\\ y+z=0\\ z+x=0\end{matrix}\right.\) (vô lý do x,y,z nguyên dương)

Vậy \((x,y,z)=(1;7;8); (2;6;8); (3;5;8); (4;4;8); (5;3;8); (6;2;8); (7;1;8)\)

19 tháng 6 2019

Ta luôn có:

\(xy+yz+zx\le x^2+y^2+z^2\)\(=3\); dấu "=" xảy ra ⇔\(x=y=z\)

\(x\le\frac{x^2+1}{2}\); dấu "=" xảy ra ⇔ \(x=1\)

\(y\le\frac{y^2+1}{2}\); dấu "=" xảy ra ⇔ \(y=1\)

\(z\le\frac{z^2+1}{2}\); dấu "=" xảy ra ⇔ \(z=1\)

Suy ra: \(x+y+z\le\frac{x^2+y^2+z^2+3}{2}=\frac{6}{2}=3\)

Do đó: \(P_{max}=xy+yz+zx+\frac{5}{x+y+z}\le3+\frac{5}{3}=\frac{14}{3}\)

Dấu "=" xảy ra ⇔ x=y=z=1