\(\sqrt{x+2\sqrt{3}}=\sqrt{y}+\sqrt{z}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
30 tháng 5 2021

Bình phương hai vế ta được: 

\(x+2\sqrt{3}=y+z+2\sqrt{yz}\)

\(\Leftrightarrow x-y-z=2\sqrt{yz}-2\sqrt{3}\)

\(VT\)là số hữu tỉ, \(VP\)là số vô tỉ, do đó đẳng thức trên chỉ xảy ra khi 

\(\hept{\begin{cases}x-y-z=0\\yz=3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4,y=1,z=3\\x=4,y=3,z=1\end{cases}}\).

24 tháng 10 2016

Ta có \(\sqrt{1+x^2}+\sqrt{2x}\le\sqrt{2}\left(x+1\right)\)

\(\sqrt{1+y^2}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\)

\(\sqrt{1+z^2}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\)

\(\Rightarrow\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+\sqrt{2x}+\sqrt{2y}+\sqrt{2z}\le\sqrt{2}\left(x+y+z+3\right)\le6\sqrt{2}\)

Ta lại có \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\sqrt{3\left(x+y+z\right)}\le3\)

Theo đề bài ta có

\(\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+3\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)

\(\le6\sqrt{2}+\left(3-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\le3\sqrt{2}+9\)

Dấu = xảy ra khi x = y = z = 1

10 tháng 10 2019

Theo giả thiết \(\sqrt{\frac{yz}{x}}+\sqrt{\frac{xz}{y}}+\sqrt{\frac{xy}{z}}=3\)

\(\Rightarrow\frac{yz}{x}+\frac{xz}{y}+\frac{xy}{z}+2x+2y+2z=9\)

Mặt khác , ta có BĐT phụ : \(\frac{yz}{x}+\frac{xz}{y}+\frac{xy}{z}\ge x+y+z\)

\(\Rightarrow9\ge3\left(x+y+z\right)\)

\(\Leftrightarrow x+y+z\le3\)

Áp dụng BĐT Cauchy Shwarz \(\Rightarrow\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\le3\left(x+y+z\right)\le9\)

\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le3\)

Ta có : \(P=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{2016}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

\(=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\frac{2007}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

\(\ge2.\sqrt{9}+\frac{2007}{3}=675\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)

Chúc bạn học tốt !!!

áp dụng bđt cô si ta có:

\(xy\le\frac{x^2+y^2}{2};yz\le\frac{y^2+z^2}{2};zx\le\frac{z^2+x^2}{2}\)

\(\Rightarrow A\ge\sqrt{\frac{x^2+y^2}{2}}+\sqrt{\frac{y^2+z^2}{2}}+\sqrt{\frac{z^2+x^2}{2}}\)

theo bunhia thì \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2;2\left(y^2+z^2\right)\ge\left(y+z\right)^2;2\left(z^2+x^2\right)\ge\left(z+x\right)^2\)

\(\Rightarrow A\ge\sqrt{\frac{\left(x+y\right)^2}{4}}+\sqrt{\frac{\left(y+z\right)^2}{4}}+\sqrt{\frac{\left(z+x\right)^2}{4}}=\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=x+y+z=1\)

Vậy \(Min_A=1\Leftrightarrow x=y=z=\frac{1}{3}\)

15 tháng 10 2019

max=căn 66

áp dụng bất đẳng thức cô si là ra 

tích cho nha

15 tháng 10 2019

Áp dụng bđt côsi ta có: 

\(\hept{\begin{cases}\sqrt{\left(x+y\right)4}\le\frac{x+y+4}{2}\left(1\right)\\\sqrt{\left(z+y\right)4}\le\frac{y+z+4}{2}\left(2\right)\\\sqrt{\left(z+x\right)4}\le\frac{z+x+4}{2}\left(3\right)\end{cases}}\)

Lấy \(\left(1\right)+\left(2\right)+\left(3\right)\)ta được:

\(2P\le x+y+z+6=12\)

\(\Leftrightarrow p\le6\)

Dấu"="xảy ra \(\Leftrightarrow x=y=z=2\)

Vậy \(P_{max}=6\)\(\Leftrightarrow x=y=z=2\)

28 tháng 4 2016

ko làm đâu

28 tháng 4 2016

Huhu

tui

moi

hoc

lop

5

chua

bit

lam

lop

9

kho

qua

hihi

30 tháng 5 2016

Đặt \(\sqrt{\text{x}}-\sqrt{y}=a\)\(\sqrt{y}-\sqrt{z}=b\)\(\sqrt{z}-\sqrt{x}=c\)

\(\Rightarrow a+b+c=0\). Ta sẽ chứng minh : \(a^3+b^3+c^3=3abc\)

Ta có : \(a+b+c=0\Rightarrow a=-\left(b+c\right)\Rightarrow a^3=-\left(b+c\right)^3\)

\(\Rightarrow a^3=-\left[b^3+c^3+3bc\left(b+c\right)\right]\Rightarrow a^3+b^3+c^3=-3bc\left(-a\right)=3abc\)

Mặt khác, ta lại có : \(a^3+b^3+c^3=0\left(gt\right)\Rightarrow3abc=0\Rightarrow abc=0\)

\(\Rightarrow a=0\)hoặc \(b=0\)hoặc \(c=0\)

Tu do de dang giai tiep bai toan!

27 tháng 1 2018

bài 3:

a, đặt x12=y9=z5=kx12=y9=z5=k

=>x=12k,y=9k,z=5k

ta có: ayz=20=> 12k.9k.5k=20

=> (12.9.5)k^3=20

=>540.k^3=20

=>k^3=20/540=1/27

=>k=1/3

=>x=12.1/3=4

y=9.1/3=3

z=5.1/3=5/3

vậy x=4,y=3,z=5/3

b,ta có: x5=y7=z3=x225=y249=z29x5=y7=z3=x225=y249=z29

A/D tính chất dãy tỉ số bằng nhau ta có:

x5=y7=z3=x225=y249=z29=x2+y2z225+499=58565=9x5=y7=z3=x225=y249=z29=x2+y2−z225+49−9=58565=9

=>x=5.9=45

y=7.9=63

z=3*9=27

vậy x=45,y=63,z=27