K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2018

Ta có : 

\(\left|1-2x\right|+\left|2-3y\right|+\left|3-4z\right|=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}\left|1-2x\right|=0\\\left|2-3y\right|=0\\\left|3-4z\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}1-2x=0\\2-3y=0\\3-4z=0\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}2x=1\\3y=2\\4z=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{3}\\z=\frac{3}{4}\end{cases}}}\)

Vậy \(\left(x,y,z\right)=\left(\frac{1}{2};\frac{2}{3};\frac{3}{4}\right)\)

Chúc bạn học tốt ~ 

13 tháng 4 2018

Ta có: \(|1-2x|,|2-3y|,|3-4z|\ge0\)

Mà \(|1-2x|+|2-3y|+|3-4z|\)= 0

Nên \(\hept{\begin{cases}1-2x=0\\2-3y=0\\3-4z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=1\\3y=2\\4x=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{3}\\z=\frac{3}{4}\end{cases}}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{3}\\z=\frac{3}{4}\end{cases}}\)

22 tháng 8 2020

\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=3z\\2x-3y+4z=1\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=\frac{z}{\frac{1}{3}}\\2x-3y+4z=1\end{cases}}\Rightarrow\hept{\begin{cases}\frac{2x}{4}=\frac{3y}{9}=\frac{4z}{\frac{4}{3}}\\2x-3y+4z=1\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{2x}{4}=\frac{3y}{9}=\frac{4z}{\frac{4}{3}}=\frac{2x-3y+4z}{4-9+\frac{4}{3}}=\frac{1}{-\frac{11}{3}}=-\frac{3}{11}\)

\(\frac{2x}{4}=-\frac{3}{11}\Rightarrow x=-\frac{6}{11}\)

\(\frac{3y}{9}=-\frac{3}{11}\Rightarrow y=-\frac{9}{11}\)

\(\frac{4z}{\frac{4}{3}}=-\frac{3}{11}\Rightarrow z=-\frac{1}{11}\)

Vậy ...

22 tháng 8 2020

\(\frac{x}{2}=\frac{y}{3}=3z\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{\frac{1}{3}}\)  

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{\frac{1}{3}}=\frac{2x-3y+4z}{2\cdot2-3\cdot3+4\cdot\frac{1}{3}}=\frac{1}{-\frac{11}{3}}=-\frac{3}{11}\)                

\(\frac{x}{2}=-\frac{3}{11}\Rightarrow x=-\frac{3}{11}\cdot2=-\frac{6}{11}\)             

\(\frac{y}{3}=-\frac{3}{11}\Rightarrow y=-\frac{3}{11}\cdot3=-\frac{9}{11}\)                 

\(\frac{z}{\frac{1}{3}}=-\frac{3}{11}\Rightarrow z=-\frac{3}{11}\cdot\frac{1}{3}=-\frac{1}{11}\)

18 tháng 8 2016

2x-3y+4z=5

=>2x-3y-4.(-3x-3y-3)=5

14x+9y=-17

14x+9.(-8x:7+1)=-17

26x:7=-26

26x=-26.7

26x=-182

x=-182:26

x=-7

mình chỉ làm đc z thôi ko biết có đ ko.

18 tháng 8 2016
  • Theo đề bài,ta có:

\(\frac{2}{x}=\frac{3}{y}=\frac{1}{z}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{1}\)

a) Theo đề bài, ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{1}\) và 2x-3y+4z

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{1}=\frac{2x-3y+4z}{2.2-3.3+4.1}=\frac{5}{-1}=-5\)

  • \(\frac{x}{2}=\left(-5\right).2=-10\)
  • \(\frac{y}{3}=\left|\left(-5\right).3=-15\right|\)
  • \(\frac{z}{1}=\left(-5\right).1=-5\)

Vậy x=-10,y=-15,z=-5

b) Theo đề bài, ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{1}=\frac{x^2.y^2.z^2}{2^2.3^2.1^2}=\frac{36}{36}=1\)

Áp dụng tính chất của dãy tỉ só bằng nhau:

  • \(\frac{x}{2}=1.2=2\)
  • \(\frac{y}{3}=1.3=3\)
  • \(\frac{z}{1}=1.1=1\)

Vậy x=2,y=3,z=1.

hihi ^...^ vui^_^

23 tháng 11 2023

Ta có: \(\left\{{}\begin{matrix}\left(2x-3y\right)^{2018}\ge0\forall x,y\\\left(3y-4z\right)^{2020}\ge0\forall y,z\\\left|2x+3y-z-63\right|\ge0\forall x,y,z\end{matrix}\right.\)

\(\Rightarrow\left(2x-3y\right)^{2018}+\left(3y-4z\right)^{2020}+\left|2x+3y-z-63\right|\ge0\forall x,y,z\)

Mà: \(\left(2x-3y\right)^{2018}+\left(3y-4z\right)^{2020}+\left|2x+3y-z-63\right|=0\)

nên: \(\left\{{}\begin{matrix}2x-3y=0\\3y-4z=0\\2x+3y-z-63=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x=3y\\3y=4z\\z=2x+3y-63\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2x=4z\\3y=4z\\z=4z+4z-63\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4z:2\\y=4z:3\\z=8z-63\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2z\\y=4z:3\\-7z=-63\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\cdot9=18\\y=4\cdot9:3=12\\z=9\end{matrix}\right.\)

Vậy \(x=18;y=12;z=9\).

$Toru$

27 tháng 12 2023

Ta có: \(4x=3y\) hay \(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}\left(1\right)\)

\(4y=3z\) hay \(\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{y}{12}=\dfrac{z}{16}\left(2\right)\)

Từ (1) và (2), suy ra:

\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}\) \(\Rightarrow\dfrac{2x}{18}=\dfrac{y}{12}=\dfrac{z}{16}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{2x}{18}=\dfrac{y}{12}=\dfrac{z}{16}=\dfrac{2x+y-z}{18+12-16}=\dfrac{-14}{14}=-1\)

Do đó:

\(\dfrac{x}{9}=-1\Rightarrow x=9.\left(-1\right)=-9\)

\(\dfrac{y}{12}=-1\Rightarrow y=12.\left(-1\right)=-12\)

\(\dfrac{z}{16}=-1\Rightarrow z=16.\left(-1\right)=-16\)

Vậy x = -9 ; y = -12 ; z = -16

 

16 tháng 10 2019

MIK LM CÂU KHÓ NHẤT NHÁ!

c) Có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)

\(\Rightarrow\left\{{}\begin{matrix}x=12.\frac{3}{2}=18\\y=12.\frac{4}{3}=16\\z=\frac{5}{4}=15\end{matrix}\right.\)

Vậy...

16 tháng 10 2019

a) Ta có: \(\frac{1}{2}x=\frac{3}{4}z=\frac{2}{3}y.\)

=> \(\frac{x}{2}=\frac{3z}{4}=\frac{2y}{3}\)

=> \(\frac{x}{2}=\frac{z}{\frac{4}{3}}=\frac{y}{\frac{3}{2}}\)\(x-y=15.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{2}=\frac{z}{\frac{4}{3}}=\frac{y}{\frac{3}{2}}=\frac{x-y}{2-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=30\Rightarrow x=30.2=60\\\frac{z}{\frac{4}{3}}=30\Rightarrow z=30.\frac{4}{3}=40\\\frac{y}{\frac{3}{2}}=30\Rightarrow y=30.\frac{3}{2}=45\end{matrix}\right.\)

Vậy \(\left(x;z;y\right)=\left(60;40;45\right).\)

Chúc bạn học tốt!