K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TN
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
N
0
DT
0
A
0
BT
0
G
28 tháng 2 2019
\(\hept{\begin{cases}-1\le x\le1\\-1\le y\le1\\-1\le z\le1\end{cases}}\Leftrightarrow x^2;y^2;z^2\le1\)
Mà: \(x;y;z\le1\Leftrightarrow y^4\le y^2;z^6\le x^2\)
\(\Leftrightarrow x^2+y^4+z^6\le x^2+y^2+z^2\)
Trong x;y;z có ít nhất 2 số cùng dấu,nghhiax là có tích >=0,giả sử đó là xy
\(\Leftrightarrow x^2+y^2+z^2\le x^2+y^2+z^2+2xy=\left(x+y\right)^2+z^2=\left(-z\right)^2+z^2=2z^2\le2\)
VT
1
12 tháng 5 2018
2^x +2^y+2^z=2336
2^10<2336<2^11
z>y>x>0
=>z<=10; x>=9
vo nghiem
\(x=7;y=9;z=12\)
\(2^x+2^y+2^z=4736\\ \Rightarrow2^x\left(1+2^{y-x}+2^{z-x}\right)=4736\)
Ta có \(0< x< y< z\Rightarrow y-z>0;x-z>0\)
\(\Rightarrow1+2^{y-x}+2^{z-x}\) lẻ
\(\Rightarrow4736=2^7\cdot37=2^x\left(1+2^{y-x}+2^{z-x}\right)\\ \Rightarrow\left\{{}\begin{matrix}x=7\\2^{y-x}+2^{z-x}+1=37\left(1\right)\end{matrix}\right.\\ \Rightarrow2^{y-7}+2^{z-7}=36\\ \Rightarrow2^{y-7}\left(1+2^{z-y}\right)=36=2^2\cdot3^2\)
Mà \(0< y< z\Rightarrow z-y>0\Rightarrow1+2^{z-y}\) lẻ
\(\Rightarrow\left\{{}\begin{matrix}y-7=2\\1+2^{z-y}=3^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=9\\2^{z-9}=8=2^3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=9\\z=12\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(7;9;12\right)\)