Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Câu hỏi của Black - Toán lớp 7 - Học toán với OnlineMath
Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z.
Vì x, y, z nguyên dương nên xyz khac 0, do x ≤ y ≤ z
=> xyz = x + y + z ≤ 3z => xy ≤ 3
=> xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3.
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).
Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z.
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3
=> xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3.
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).
đúng mình nhé
+) Nếu x2 = 1 => x = 1 hoặc x = - 1 và y2 + z2 = 13 Mà y2 + z2 \(\ge\) 2y2 => 2y2 \(\le\) 13 . Vì y nguyên => y2 = 0; 1 ; 4
=> z2 = 13; 12; 9
Chỉ có y2 = 4 và z2 = 9 thỏa mãn => y = 2 hoặc -2 và z = 3 hoặc -3
+) Nếu x2 = 4 => x = 2 hoặc x = - 2 và y2 + z2 = 9 Mà y2 + z2 \(\ge\) 2y2 => 2y2 \(\le\) 9 . Vì y nguyên => y2 = 0; 1 ; 4
=> z2 = 9; 8; 5
Chỉ có y2 = 0 và z2 = 9 thỏa mãn . tuy nhiên do x2 < y2 nên trường hợp này loại
Vây (x;y;z) thỏa mãn là (1;2;3); (1; 2;-3); (1;-2;3);(1;-2;-3) ; (-1;2;3); (-1; 2;-3); (-1;-2;3);(-1;-2;-3)
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)