Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2006^x=2005^y+2004^z>1\)
\(\Rightarrow x\ge1\)
Vì \(2006^x\) là số chẵn, \(2005^y\) là số lẻ
nên \(2004^z\) là số lẻ
\(\Rightarrow z=0\)
Lúc đó, ta có phương trình: \(2006^x=2005^y+1\)
Lại có: \(\hept{\begin{cases}2005\equiv1\left(mod4\right)\Rightarrow2005^y+1\equiv2\left(mod4\right)♣\\2006=4m+2\Rightarrow2006^x=4k+2^x\end{cases}}\)
Với \(x\ge2\) thì \(2006^x\) chia hết cho 4, mâu thuẫn với ♣.
Vậy \(x=y=1;z=0\)
thế này nha
khi y , z > 1 thì vế phải lẻ mà x lẻ khi và chỉ khi x =1 khi này thì k thỏa mãn
tương tự xét với x âm
rùi xét x=y=z = 1 thì t/m => x=y=z = 1
ah nhầm tìm x,y,z thuộc N nên k phải xét trường hợp âm
mình thay câu thứ 2 là x lẻ -> vế tría lẻ nha
bài này khó quá mình ko biết giải.có bạn nào biết giải chỉ mình với
ta có 2006x=2005y+2004z>12006x=2005y+2004z>1 do đó x≥1x≥1
vì 2006x2006x là số chẵn,2005y2005y là số lẻ do đó 2004z2004z là số lẻ do đó z=0z=0
nên ta có phương trình 2006x=2005y+12006x=2005y+1
ta có 2005≡1(mod4)⇒2005y+1≡2(mod4)2005≡1(mod4)⇒2005y+1≡2(mod4) (∗)(∗)
ta có 2006=4m+2⇒2006x=4k+2x2006=4m+2⇒2006x=4k+2x
với x≥2x≥2 thì 2006x⋮42006x⋮4 điều này mâu thuẫn với (∗)(∗)
vậy x=y=1,z=0
\(\left(x+y\right)\left(y+z\right)\left(x+7\right)=9.223\)
+ x+7 = 9 => x =2
=> \(\left(2+y\right)\left(y+z\right)\left(2+7\right)=9.223\)=> \(\left(2+y\right)\left(y+z\right)=223\)=> 2+y =223 và y +z =1 loại
+ x+7 = 223 => x =216 => (216+y) (y+z) = 9 loại
Vậy không có x;y;z thuộc N nào thỏa mãn