Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x:y:z=3:4:5\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
\(\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\)
\(\Rightarrow\frac{3x^2}{27}=\frac{2y^2}{32}=\frac{5z^2}{125}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{3x^2}{27}=\frac{2y^2}{32}=\frac{5z^2}{125}=\frac{5z^2-3x^2-2y^2}{125-27-31}=\frac{594}{67}\)
Bạn tự giải tiếp .
Bài này dễ thôi
\(x:y:z=3:4:5=>\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
hay \(\frac{3x^2}{27}=\frac{2y^2}{32}=\frac{5z^2}{125}\) và \(5z^2-3x^2-2y^2=594\)
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{5z^2}{125}=\frac{3x^2}{27}=\frac{2y^2}{32}\) = \(\frac{5z^2-3x^2-2y^2}{125-27-32}\) = \(\frac{594}{66}\) = 9
=> x = 3.9 = 27
y = 4.9 = 36
z = 5.9 = 45
a)Từx:y:z=3:5:(−2)=>\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}\)
Áp dụng t/c của dãy tỉ số bằng nhau,ta có
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}=\dfrac{5x-y+3z}{5.3-5+3.\left(-2\right)}=-\dfrac{16}{4}=-4\)
=>x=-12
y=-20
z=8
Vậy...
Các câu sau tương tự
a) Thiếu đề
b) Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) => \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x+3y+2z}{4+6+6}=\frac{14}{16}=\frac{7}{8}\)
=> \(\hept{\begin{cases}\frac{x}{1}=\frac{7}{8}\\\frac{y}{2}=\frac{7}{8}\\\frac{z}{3}=\frac{7}{8}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{7}{8}.1=\frac{7}{8}\\y=\frac{7}{8}.2=\frac{7}{4}\\z=\frac{7}{8}.3=\frac{21}{8}\end{cases}}\)
Vậy ...
Sửa lại xíu :
\(a)\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và \(x-2y+3z=14\)
\(b)\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)và \(4x+3y+2z=36\)
\(x:y:z=3:4:5\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(5z^2-3x^2-2y^2\)
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{5z^2-3x^2-2y^2}{5.5^2-3.3^2-2.4^2}=\frac{594}{66}=9\)
\(\Leftrightarrow\frac{x}{3}=9\Rightarrow x=9.3=27\)
\(\Leftrightarrow\frac{y}{4}=9\Rightarrow y=9.4=36\)
\(\Leftrightarrow\frac{z}{5}=9\Rightarrow z=9.5=45\)
Vậy x = 27 ; y = 36 ; z = 45
\(x+y=3\left(x-y\right)\)
\(\Rightarrow x+y=3x-3y\)
\(\Rightarrow y+3y=3x-x\)
\(\Rightarrow4y=2x\)
\(\Rightarrow2y=x\)
\(\Rightarrow x:y=2\)
\(\Rightarrow x+y=2y+y=2\)
\(\Rightarrow3y=2\)
\(\Rightarrow y=\frac{2}{3}\)
\(\Rightarrow x=\frac{4}{3}\)
Vậy \(x=\frac{4}{3};y=\frac{2}{3}\)
x : y : z = 3 : 4 : 5
=> \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)
Thế vào đẳng thức , ta có :
\(5.\left(5k\right)^2-3.\left(3k\right)^2-2.\left(4k\right)^2=594\)
\(5.25k^2-3.9k^2-2.16k^2=594\)
\(125k^2-27k^2-32k^2=594\)
\(k^2.\left(125-27-32\right)=594\)
\(66k^2=594\)
\(k^2=9\)
\(\Rightarrow k=\hept{\begin{cases}3\\-3\end{cases}}\)
Với \(k=3\Rightarrow\hept{\begin{cases}x=3k=9\\y=4k=12\\z=5k=15\end{cases}}\)
\(k=-3\Rightarrow\hept{\begin{cases}x=3k=-9\\y=4k=-12\\z=5k=-15\end{cases}}\)
Ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(5z^2-3x^2-2y^2=594\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{5z^2-3x^2-2y^2}{5.5^2-3.3^2-2.4^2}=\frac{594}{66}=9\)
\(\hept{\begin{cases}\frac{x^2}{3^2}=9\Rightarrow x=\sqrt{9.3^2}=9;x=-9\\\frac{y^2}{4^2}=9\Rightarrow y=\sqrt{9.4^2}=12;y=-12\\\frac{z^2}{5^2}=9\Rightarrow z=\sqrt{9.5^2}=15;z=-15\end{cases}}\)
Vậy \(x=9;y=12;z=15\)hoặc \(x=-9;y=-12;z=-15\)