K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2016

\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}=\frac{x+1+y+2+z+3}{3+4+5}=\frac{24}{12}=2\)

\(\frac{x+1}{3}=2\Rightarrow x+1=6\Rightarrow x=5\)

\(\frac{y+2}{4}=2\Rightarrow y+2=8\Rightarrow y=6\)

\(\frac{z+3}{5}=2\Rightarrow z+3=10\Rightarrow z=7\)

Vậy x=5;y=6;z=7

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\);  \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)

=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{2.15+3.20-28}=\frac{124}{62}=2\)

=> x = 2.15 = 30; y = 2.20 = 40; z = 2.28 = 56

14 tháng 7 2017

b) \(\dfrac{3}{x+1}=\dfrac{4}{y-2}=\dfrac{5}{z-3}=\dfrac{3+4+5}{\left(1-2-3\right)+\left(x+y+z\right)}=\dfrac{12}{14}=\dfrac{6}{7}\)

Ta có: \(\dfrac{3}{x+1}=\dfrac{6}{7}\Rightarrow x+1=\dfrac{7}{2}\Rightarrow x=\dfrac{5}{2}\)

\(\dfrac{4}{y-2}=\dfrac{6}{7}\Rightarrow y-2=\dfrac{14}{3}\Rightarrow y=\dfrac{20}{3}\)

\(\dfrac{5}{z-3}=\dfrac{6}{7}\Rightarrow z-3=\dfrac{35}{6}\Rightarrow z=\dfrac{53}{6}\)

Vậy...............

4 tháng 9 2017

a, -(-2) là sao bạn

b, \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)

\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)

=>x=42,y=28,z=20

c, \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{x^2}{16}=\frac{y^2}{25}=\frac{z^2}{36}\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)

=>x=12 hoặc x=-12

y=15 hoặc y=-15

z=18 hoặc -18

4 tháng 9 2017

Minh viet nham cau a

cau a la; x;y:z=3:5:(-2) va 5.x-y+3.z=-16

29 tháng 9 2016

a, x/y = -6/9 và x-y= 30
đổi: x/y=-6/9 
           = x/9 =y/-6
áp dụng t/c của dãy tỉ số bằng nhau, ta có:

x/9=y/-6=x-y/9-(-6)=30/15=2

suy ra : x/9=2 => x=9.2=18

            y/-6=2 => y=-6.2=12
vậy x=18: y = 12
tích cho mih nhé ^^

28 tháng 7 2017

Ta có:

\(\frac{x}{2}=\frac{y}{3}\)=>\(\frac{x}{10}=\frac{y}{15}\)

\(\frac{y}{5}=\frac{z}{4}\)=>\(\frac{y}{15}=\frac{z}{12}\)

=>\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x-y+z}{10-15+12}=\frac{-49}{7}=-7\)

=>\(\frac{x}{10}=7\)=>x=7.10=70

   \(\frac{y}{15}=7\)=>y=7.15=105

   \(\frac{z}{12}=7\)=>z=7.12=84

Vậy x=70 ;y=105 ;z=84

28 tháng 7 2017

\(\frac{x}{2}=\frac{y}{3}\rightarrow\frac{x}{10}=\frac{y}{15}\)

\(\frac{y}{5}=\frac{z}{4}\rightarrow\frac{y}{15}=\frac{z}{12}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x-y+z}{10-5+12}=\frac{-49}{17}\)

\(\Rightarrow x=-\frac{490}{17};y=-\frac{735}{17};z=-\frac{588}{17}\)

a)Từx:y:z=3:5:(−2)=>\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}\)

Áp dụng t/c của dãy tỉ số bằng nhau,ta có

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}=\dfrac{5x-y+3z}{5.3-5+3.\left(-2\right)}=-\dfrac{16}{4}=-4\)

=>x=-12

y=-20

z=8

Vậy...

Các câu sau tương tự

24 tháng 9 2017

x/2=y/3 <=> x/8 = y/12 (nhân 2 vế với 1/4) (1) 
y/4=z/5 <=> y/12 = z/15 (nhân hai vế với 1/3) (2) 
Từ (1) và (2) suy ra: 
x/8=y/12=z/15 = (x+y-z)/(8+12-15) = 10/5 =2 
(vì x+y-z=10 và áp dụng tính chất của dãy tỷ số bằng nhau) 
Vậy: 
x = 2.8=16 
y = 2.12 = 24 
z = 2.15 = 30

24 tháng 9 2017

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}\)

\(\frac{x}{8}=2\Leftrightarrow x=16\)

\(\frac{y}{12}=2\Leftrightarrow y=24\)

\(\frac{z}{15}=2\Leftrightarrow z=30\)

Vậy x = 16 , y=24 và z = 30

a) \(\frac{x}{2}=\frac{y}{3}\)    \(\frac{y}{4}=\frac{z}{5}\)và x2-y2=16

Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{12}\)(1)

          \(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)(2)

Từ (1) và (2) => \(\frac{x}{4}=\frac{y}{12}\)

=> \(\frac{x}{4}=\frac{y}{12}\Rightarrow\frac{x^2}{16}=\frac{y^2}{154}\)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x^2}{16}=\frac{y^2}{154}=\frac{x^2-y^2}{16-154}=\frac{16}{-138}=\frac{8}{69}\)

Đến đây làm nốt

20 tháng 10 2018

should a person làm sai rồi, cách làm thì đúng nhưng nhân sai thì phải, cẩn thận nha =)

\(\frac{x}{2}=\frac{y}{3}=>\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}=>\frac{y}{12}=\frac{z}{15}\)

\(=>\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=>\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}\)

áp dụng t/c dãy tỉ sô bằng nhau ta có:

\(\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}=\frac{x^2-y^2}{64-144}=\frac{16}{-80}=-\frac{1}{5}\)

\(x^2=\frac{1}{5}.64=\frac{64}{5}=>x=\sqrt{\frac{64}{5}}\)

tương tự y và z nha