Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{2}{x-3}=\frac{5}{4}\)(ĐKXĐ : x khác 3)
=> \(2\cdot4=5\left(x-3\right)\)
=> \(8=5x-15\)
=> \(5x-15=8\)
=> \(5x=23\)=> x = 23/5 (tm)
b) \(\frac{x+1}{5}=\frac{4x-2}{3}\)
=> 3(x + 1) = 5(4x - 2)
=> 3x + 3 = 20x - 10
=> 3x + 3 - 20x + 10 = 0
=> 3x - 20x + 3 + 10 = 0
=> 3x - 20x = -13
=> -17x = -13
=> x = 13/17(tm)
2. a) Nếu đề như thế này : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và x - 2y + 2z = 10
=> \(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}=\frac{x-2y+2z}{2-6+10}=\frac{10}{6}=\frac{5}{3}\)
=> x = 5/3.2 = 10/3 , y = 5/3.3 = 5, z = 5/3.5 = 25/3 ( nên sửa lại đề bài này nhá)
b) Bạn tự làm
c) \(\frac{x}{y}=\frac{3}{5}\)=> \(\frac{x}{3}=\frac{y}{5}\)=> \(\frac{2x}{6}=\frac{3y}{15}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{2x}{6}=\frac{3y}{15}=\frac{2x-3y}{6-15}=\frac{12}{-11}=-\frac{12}{11}\)
=> \(x=-\frac{12}{11}\cdot3=-\frac{36}{11},y=-\frac{12}{11}\cdot5=-\frac{60}{11}\)
d) Đặt x/3 = y/4 = k
=> x = 3k, y = 4k
Theo đề bài ta có => xy = 3k.4k = 12k2
=> 48 = 12k2
=> k2 = 48 : 12 = 4
=> k = 2 hoặc k = -2
Với k = 2 thì x = 3.2 = 6 , y = 4.2 = 8
Với k = -2 thì x = 3(-2) = -6 , y = 4(-2) = -8
Bài 1.
a) \(\frac{2}{x-3}=\frac{5}{4}\)( ĐK : x khác 3 )
<=> 2.4 = ( x - 3 ).5
<=> 8 = 5x - 15
<=> 8 + 15 = 5x
<=> 23 = 5x
<=> 23/5 = x ( tmđk )
b) \(\frac{x+1}{5}=\frac{4x-2}{3}\)
<=> ( x + 1 ).3 = 5( 4x - 2 )
<=> 3x + 3 = 20x - 10
<=> 3x - 20x = -10 - 3
<=> -17x = -13
<=> x = 13/17
Bài 2.
a) \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\\x-2y+2z=10\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}\\x-2y+2z=10\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}=\frac{x-2y+2z}{2-6+10}=\frac{10}{6}=\frac{5}{3}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\cdot2=\frac{10}{3}\\y=\frac{5}{3}\cdot3=5\\z=\frac{5}{3}\cdot5=\frac{25}{3}\end{cases}}\)
b) \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\\\frac{z}{4}=\frac{y}{6}\\x-y+z=20\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}\times\frac{1}{6}=\frac{y}{5}\times\frac{1}{6}\\\frac{z}{4}\times\frac{1}{5}=\frac{y}{6}\times\frac{1}{5}\\x-y+z=20\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{12}=\frac{y}{30}\\\frac{z}{20}=\frac{y}{30}\\x-y+z=20\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{12}=\frac{y}{30}=\frac{z}{20}\\x-y+z=20\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{12}=\frac{y}{30}=\frac{z}{20}=\frac{x-y+z}{12-30+20}=\frac{20}{2}=10\)
\(\Rightarrow\hept{\begin{cases}x=10\cdot12=120\\y=10\cdot30=300\\z=10\cdot20=200\end{cases}}\)
c) \(\hept{\begin{cases}\frac{x}{y}=\frac{3}{5}\\2x-3y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{5}\\2x-3y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{2x}{6}=\frac{3y}{15}\\2x-3y=12\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{6}=\frac{3y}{15}=\frac{2x-3y}{6-15}=\frac{12}{-9}=-\frac{4}{3}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{4}{3}\cdot3=-4\\y=-\frac{4}{3}\cdot5=-\frac{20}{3}\end{cases}}\)
d) Đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)
xy = 48
<=> 3k.4k= 48
<=> 12k2 = 48
<=> k2 = 4
<=> k = ±2
+) Với k = 2 => \(\hept{\begin{cases}x=3\cdot2=6\\y=4\cdot2=8\end{cases}}\)
+) Với k = -2 => \(\hept{\begin{cases}x=3\cdot\left(-2\right)=-6\\y=4\cdot\left(-2\right)=-8\end{cases}}\)
Lời giải:
a, Ta có: \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\). Mà theo đề bài: 5x + y - 2z = 28
=> Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{5x}{50}=\frac{x}{10}=2\Leftrightarrow x=20\\\frac{y}{6}=2\Leftrightarrow y=12\\\frac{2z}{42}=\frac{z}{21}=2\Leftrightarrow z=42\end{matrix}\right.\)(TMĐK)
Vậy: \(x=20;y=12;z=42\)
b, Ta có: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\) ; \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\). Mà theo đề bài: 2x+3y - z = 124
=> Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{2x}{30}=\frac{x}{15}=2\Leftrightarrow x=30\\\frac{3y}{60}=\frac{y}{20}=2\Leftrightarrow y=40\\\frac{z}{28}=2\Leftrightarrow z=56\end{matrix}\right.\)(TMĐK)
Vây:\(x=30;y=40;z=56\)
c, Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x.x}{2}=\frac{x.y}{3}\). Mà x.y = 54
\(\Rightarrow\frac{x.x}{2}=\frac{x.y}{3}=\frac{54}{3}=18\)
\(\Rightarrow\frac{x^2}{2}=18\Rightarrow x^2=36\Rightarrow x\in\left\{6;-6\right\}\)
Nếu \(x=6\Rightarrow\frac{6.y}{3}=18\Rightarrow6.y=54\Rightarrow y=9\)
Nếu \(x=-6\Rightarrow\frac{-6.y}{3}=18\Rightarrow-6.y=54\Rightarrow y=-9\)
Vậy: \(\left(x;y\right)\in\left\{\left(6;9\right),\left(-6;-9\right)\right\}\)
a/ 2x = 5y và x - 2y = -12
Ta có: 2x = 5y => \(\frac{x}{5}=\frac{y}{2}\)
Áp dụng: tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5+2}=\frac{x-2y}{5+2.2}=\frac{-12}{9}=-\frac{4}{3}\)
\(\frac{x}{5}=-\frac{4}{3}\Rightarrow x=\frac{-4}{3}.5=-\frac{20}{3}\)
\(\frac{y}{2}=-\frac{4}{3}\Rightarrow y=-\frac{4}{3}.2=-\frac{8}{3}\)
Vậy:.................
b/ 2x = 3y = 4z và x + y + z =21
Ta có: 2x = 3y = 4z
=> \(\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)
=> \(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng: tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{6+4+3}=\frac{21}{13}\)
\(\frac{x}{6}=\frac{21}{13}\Rightarrow x=\frac{21}{13}.6=\frac{126}{13}\)
\(\frac{y}{4}=\frac{21}{13}\Rightarrow y=\frac{21}{13}.4=\frac{84}{13}\)
\(\frac{z}{3}=\frac{21}{13}\Rightarrow z=\frac{21}{13}.3=\frac{63}{13}\)
Vậy:...............
c/Áp dụng: tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{32}{8}=4\)
\(\frac{x}{3}=4\Rightarrow x=4.3=12\)
\(\frac{y}{5}=4\Rightarrow y=4.5=20\)
Vậy:................
d/ Ta có: 7x = 3y
=> \(\frac{7x}{21}=\frac{3y}{21}\)
=> \(\frac{x}{3}=\frac{y}{7}\)
Áp dụng: tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)
\(\frac{x}{4}=-4\Rightarrow x=\left(-4\right).4=-16\)
\(\frac{y}{7}=-4\Rightarrow y=\left(-4\right).7=-28\)
Vậy:................
#)Giải :
a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)
\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)
Vậy x = 45; y = 60; z = 84
b) Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)
\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)
\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)
Thay (1) vào (+) ta được :
\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)
\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)
Thay (2) và (+2) ta được :
\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)
\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)
Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)
Mà \(xyz=810\Rightarrow30k^3=810\)
\(\Rightarrow k^3=27\)
\(\Rightarrow k=3\)
Thay vào tìm x,,z.
c) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(xyz=810\)
Đặt:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
Ta có:
\(x=2k\)
\(y=3k\)
\(z=5k\)
Thế vào xyz = 810, ta có:
\(2k.3k.5k=810\)
\(30.k^3=810\)
\(k^3=27\)
\(\Rightarrow k=3\)
Tới đây tự tính luôn ok :))
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\ \frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1);(2) Suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tĩ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{3y}{36}=\frac{z}{15}=\frac{2x-3y+z}{18-36+15}=\frac{6}{-3}=-2\)
Suy ra
x = (-2) . 9 = -18
y = (-2) . 12 = -24
z = (-2) . 15 = -30
Áp dụng tính chất dãy tỷ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Suy ra
x = 2 . 10 = 20
y = 2 . 6 = 12
z = 2 . 21 = 42
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)
b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
\(\Rightarrow x=18;y=24;z=30\)
c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)
\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)
d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)
\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)
a) Ta có : x/2=y/3; y/5=z/4 =>
= x/10=y/15 ; y/15= z/12
=> x/10= y/15=z/12
Ap dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/10=y/15=z/12 = x-y+z / 10-15+12 = (-49)/7 = (-7)
+) Vì x/10 =(-7) => x=(-70)
+) Vì y/15 =(-7) => y=(-105)
+) Vì z/12 =(-7) => z=(-84)
NHẤN ĐÚNG NHA BẠN !
b)
Ta có: x/3=y/4 ; y/4=z/7 => x/3 = y/4=z/7
Ta có: x/3=y/4=z/7 = 2.x/2.3 =3.y/3.4 = z/7
= 2.x/6 = 3.y/12 = z/7
Ap dụng tính chất của dãy tỉ số bằng nhau, ta có:
2.x/6 = 3.y/12 = z/7 = 2.x+3.y-z/ 6+12-7
=186/11
Từ đó tính được x,y,z nha
NHẤN ĐÚNG NHA BẠN
\(\text{Áp dụng dãy tỉ lệ bằng nhau ta được:}\)
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}=\frac{x+y+z+6}{3+4+5}=\frac{24}{12}=2\)
\(\Rightarrow\hept{\begin{cases}x=2.3-1=5\\y=2.4-1=7\\z=2.5-3=7\end{cases}}\)
o) \(\frac{x}{-3}=\frac{y}{-5}=\frac{z}{-4}=\frac{2x}{2.\left(-3\right)}=\frac{y}{-5}=\frac{3z}{3.\left(-4\right)}=\frac{2x}{-6}=\frac{y}{-5}=\frac{3z}{-12}\)
Áp dụng tính chất DTSBN:
\(\frac{x}{-3}=\frac{y}{-5}=\frac{z}{-4}=\frac{2x}{-6}=\frac{y}{-5}=\frac{3z}{-12}=\frac{3z-2x}{-12-\left(-6\right)}=\frac{36}{-6}=-6\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{-3}=-6\Rightarrow x=-3.\left(-6\right)=18\\\frac{y}{-5}=-6\Rightarrow y=-5.\left(-6\right)=30\\\frac{z}{-4}=-6\Rightarrow z=-4.\left(-6\right)=24\end{cases}}\)
Vậy x = 18, y = 30, z = 24
p) \(\frac{x}{4}=\frac{y}{3}\Rightarrow\left(\frac{x}{4}\right)^2=\left(\frac{y}{3}\right)^2=\frac{xy}{4.3}=\frac{12}{12}=1\)
\(\Rightarrow\hept{\begin{cases}\left(\frac{x}{4}\right)^2=1\Rightarrow\frac{x^2}{16}=1\Rightarrow x^2=1.16=16=4^2\\\left(\frac{y}{3}\right)^2=1\Rightarrow\frac{y^2}{9}=1\Rightarrow y^2=1.9=9=3^2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x\in\text{{}4;-4\\y\in\text{{}3;-3\end{cases}}\)Nhớ thêm dấu ''}'' ở đằng sau -4 và -3 nhé
Vậy ...