Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(2x=3y\Rightarrow y=\frac{2x}{3}\)
\(!x+2y!=5\Rightarrow\orbr{\begin{cases}x+2y=5\\x+2y=-5\end{cases}\Rightarrow\orbr{\begin{cases}x+2.\frac{2}{3}x=5\Rightarrow x=\frac{15}{7}\\x+2.\frac{2}{3}x=-5\Rightarrow x=-\frac{15}{7}\end{cases}}}\)\(\Rightarrow\orbr{\begin{cases}y=\frac{10}{7}\\y=\frac{-10}{7}\end{cases}}\Rightarrow\orbr{\begin{cases}z=\frac{6}{7}\\z=\frac{6}{7}\end{cases}}\)
(x,y,z)=(15/7,10/7,6/7)
(x,y,z)=(-15/7,-10/7,-6/7)
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(.\frac{x}{10}=2\Rightarrow x=20\)
\(.\frac{y}{6}=2\Rightarrow y=12\)
\(.\frac{z}{21}=2\Rightarrow z=42\)
Vậy............
\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\) và \(2x+3y-z=186\)
Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}\times\frac{1}{5}=\frac{y}{4}\times\frac{1}{5}=\frac{x}{15}=\frac{y}{20}\left(1\right)\)
Từ \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}\times\frac{1}{4}=\frac{z}{7}\times\frac{1}{4}=\frac{y}{20}=\frac{z}{28}\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=k\)
\(\Rightarrow\hept{\begin{cases}x=15k\\y=20k\\z=28k\end{cases}}\)
Lại có : \(2x+3y-z=186\)
Thay vào ta có :
\(2.15k+3.20k-28k=186\)
\(30k+60k-28k=186\)
\(62k=186\)
\(k=3\)
Thay vào ta được :
\(\Rightarrow\hept{\begin{cases}x=15.3=45\\y=20.3=60\\z=28.3=84\end{cases}}\)
Vậy .....
Ta có
\(\frac{x}{y}=\frac{3}{2};5x=7z\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{x}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{x}{10}=\frac{2y}{28}\)
Ap dụng tính chất DTSBN
\(\frac{x}{21}=\frac{2y}{28}=\frac{z}{10}=\frac{x-2y+z}{21-28+10}=\frac{32}{3}\)
\(\hept{\begin{cases}\frac{x}{21}=\frac{32}{3}\Rightarrow x=224\\\frac{y}{14}=\frac{32}{3}\Rightarrow x=\frac{448}{3}\\\frac{z}{10}=\frac{32}{3}\Rightarrow x=\frac{320}{3}\end{cases}}\)
Bạn kiểm tra lại đề xem có sai, còn nếu mik sai thì mn kiểm tra xem sai ở đâu với
\(x+y+z=\frac{x}{y+z-2}=\frac{y}{x+z-3}=\frac{z}{y+x+5}\Rightarrow\frac{1}{x+y+z}=\frac{y+z-2}{x}=\frac{z+x-3}{y}=\frac{x+y+5}{z}\)
áp dụng t.c dãy tỉ số bằng nhau ta có:
\(\frac{1}{x+y+z}=\frac{y+z-2}{x}=\frac{z+x-3}{y}=\frac{x+y+5}{z}=\frac{y+z-2+z+x-3+x+y+5}{x+y+z}=2\left(vìx+y+z\ne0\right)\)
\(\Rightarrow\frac{1}{x+y+z}=2\Rightarrow x+y+z=\frac{1}{2}\left(ĐK:x,y,z\ne0\right)\)
\(\frac{y+z-2}{x}=2\Leftrightarrow2x=y+z-2\Rightarrow3x=x+y+z-2\Rightarrow x=-\frac{1}{2}\)
\(\frac{z+x-3}{y}=2\Rightarrow2y=x+z-3\Rightarrow3y=x+y+z-3\Rightarrow y=-\frac{5}{6}\)
\(\frac{x+y+5}{z}=2\Rightarrow2z=x+y+5\Rightarrow3z=x+z+y+5\Rightarrow z=\frac{11}{6}\)
VẬY \(x=-\frac{1}{2},y=-\frac{5}{6},z=\frac{11}{6}\)
\(\frac{y+z+2}{x}=\frac{x+z+3}{y}=\frac{x+y-5}{z}=\frac{1}{x+y+z}\)
=>\(\frac{\left(x+y+z\right)2}{x+y+z}=\frac{1}{x+y+z}\)
=> x+y+z=1/2
=> y+z=2x-2
=> x+z=2y-3
=>x+y=2x+5
=> 1/2-x=2x-3
=> x=5/6
=>1/2-y=2y-3
=> y=7/6
=> z=1/2-(7/6+5/6)=-3/2
chtt