Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2z+8}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2z+8}=\frac{7+3+10}{2x+2+2y-4+2z+8}=\frac{20}{2\left(x+y+z\right)+6}=\frac{20}{40}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}2x+2=14\\2y-4=6\\2z+8=10\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=5\\z=1\end{cases}}\)
ta có
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{z+4}=\frac{7+3}{2x+2y+2-4}=\frac{10}{2x+2y+2-4}=\frac{10}{2\left(x+y\right)-4}=\frac{5}{x+y-1}\)
\(=\frac{10}{17-1+4}=\frac{10}{20}=\frac{1}{2}\)
từ đó bạn tính ra nha
mk cung hoc lop 7 nhung cai bai do ma ko lam dc thi chet di
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\frac{x}{5} = \frac{y}{7} = \frac{z}{9} = \frac{{x - y + z}}{{5 - 7 + 9}} = \frac{{\frac{7}{3}}}{7} = \frac{7}{3}.\frac{1}{7} = \frac{1}{3}\\ \Rightarrow x = 5.\frac{1}{3} = \frac{5}{3};\\y = 7.\frac{1}{3} = \frac{7}{3};\\z = 9.\frac{1}{3} = \frac{9}{3} = 3.\end{array}\)
Vậy \(x = \frac{5}{3};y = \frac{7}{3};z = 3\)
\(\frac{x}{y}=\frac{10}{9}\text{ }\Rightarrow\text{ }\frac{x}{10}=\frac{y}{9}\text{ }\left(1\right)\)
\(\frac{y}{z}=\frac{3}{4}=\frac{9}{12}\text{ }\Rightarrow\text{ }\frac{y}{9}=\frac{z}{12}\text{ }\left(2\right)\)
Từ ( 1 ) và ( 2 ) suy ra : \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)
Do đó : x = 6 . 10 = 60 ; y = 6 . 9 = 54 ' z = 6 . 12 = 72
Ta có: \(\frac{x}{y}=\frac{10}{9}\) và \(\frac{y}{z}=\frac{3}{4}\)
=> \(\frac{y}{z}=\frac{9}{12}\)
=> \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)
=> \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{87}{13}=6\)
=>\(\frac{x}{10}=6=>x=60\) ; \(\frac{y}{9}=6=>y=54\); \(\frac{z}{12}=6=>z=72\)
vậy x=60 ; y=54 ; z=72
Bài I: Từ \(\frac{x}{2}\)=\(\frac{y}{3}\)\(\Rightarrow\)\(\frac{x}{2}\).\(\frac{1}{4}\)=\(\frac{y}{3}\).\(\frac{1}{4}\)\(\Rightarrow\)\(\frac{x}{8}\)=\(\frac{y}{12}\)(1)
Từ \(\frac{y}{4}\)=\(\frac{z}{5}\)\(\Rightarrow\)\(\frac{y}{4}\).\(\frac{1}{3}\)=\(\frac{z}{5}\).\(\frac{1}{3}\)\(\Rightarrow\)\(\frac{y}{12}\)=\(\frac{z}{15}\)(2)
Từ (1) và (2) suy ra \(\frac{x}{8}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{8}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)=\(\frac{x+y-z}{8+12-15}\)=\(\frac{10}{5}\)=2
Do đó:\(x=2.8=16\)
\(y=12.2=24\)
\(z=15.2=30\)
Vậy \(x=16\);\(y=24\);\(z=30\)
Bài II: Đặt \(k=\frac{x}{2}\)=\(\frac{y}{5}\)
\(\Rightarrow\)\(x=2.k\);\(y=5.k\)
Vì \(x.y=10\)nên \(2k.5k=10\)
\(\Rightarrow\)\(10.k^2=10\)
\(\Rightarrow\)\(k^2=1\)
\(\Rightarrow\)\(k=1\)hoặc\(k=-1\)
+) Với \(k=1\)thì \(x=2\);\(y=5\)
+) Với \(k=-1\)thì \(x=-2\);\(y=-5\)
Vậy \(x=2\);\(y=5\)hoặc \(x=-2\);\(y=-5\)
\(\frac{x}{2}=\frac{y}{5}\)và \(xy=10\)
Ta có :
\(\frac{x}{2}=\frac{y}{5}\Leftrightarrow5x=2y\Leftrightarrow x=\frac{2y}{5}\). Thay vào biểu thức x . y = 10 . Ta được :
\(\frac{2y}{5}.y=10\Leftrightarrow\frac{2y^2}{5}=10\Leftrightarrow2y^2=50\Leftrightarrow y^2=25\Leftrightarrow y=5;y=-5\)
Với \(y=5\Rightarrow x=\frac{2.5}{5}=2\)
Với \(y=-5\Rightarrow x=\frac{2.\left(-5\right)}{5}=-2\)
a, 5x = 8y => \(\frac{x}{8}=\frac{y}{5}\)
8y = 20z => 2y = 5z => \(\frac{y}{5}=\frac{z}{2}\)
=> \(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}=\frac{x-y-z}{8-5-2}=\frac{3}{1}=3\)
=> x = 24,y = 15,z = 6
b, \(\frac{6}{11}x=\frac{9}{2}y\)=> \(\frac{12x}{22}=\frac{99y}{22}\)=> 12x = 99y => 4x = 33y => \(\frac{x}{33}=\frac{y}{4}\)
\(\frac{9}{2}y=\frac{18}{5}z\)=> \(\frac{45y}{10}=\frac{36z}{10}\)=> 45y = 36z => 5y = 4z => \(\frac{y}{4}=\frac{z}{5}\)
=> \(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{120}{-24}=-5\)
=> x = -165 , y = -20 , z = -25
c, Đặt : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)=> x = 12k , y = 9k , z = 5k
=> xyz = 12k . 9k . 5k
=> xyz = 540k3
=> 540k3 =20
=> k3 = 20/540
=> k3 = 1/27
=> k = 1/3
Do đó : x= 4 , y = 3 , z = 5/3
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
\(\frac{x}{9}=\frac{y}{5}=\frac{z}{10}\)\(=\frac{x-y+z}{9-5+10}\)\(=5\)
---> x = 9.5 = 45
---> y = 5.5 = 25
---> z = 10.5 = 50
học tốt nhoa bạn
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{5}=\frac{z}{10}=\frac{x-y+z}{9-5+10}=\frac{70}{14}=5\)
\(\frac{x}{9}=5\Rightarrow x=45\)
\(\frac{y}{5}=5\Rightarrow y=25\)
\(\frac{z}{10}=5\Rightarrow z=50\)
Vậy x = 45; y = 25; z = 50