Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng dãy tỉ số bằng nhau :
\(\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
x = 2 . 10 = 20
y = 2 . 15 = 30
z = 2 . 21 = 42
Vậy : .....
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)
MSC của y là : 20
Có: \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(2x+3y-z=186\)
\(\Rightarrow2.15+3.20-28=30+60-28=62\)
\(\frac{186}{62}=3\)
x = 3 . 15 = 45
y = 3 . 20 = 60
z = 3 . 28 = 84
Vậy: .....
\(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
=> \(\frac{x}{9}=3\Rightarrow x=27\)
\(\Rightarrow\frac{y}{12}=3\Rightarrow y=36\)
\(\Rightarrow\frac{z}{20}=3\Rightarrow z=60\)
các câu còn lại bạn làm tương tự như thế nhé
Bài 1 :
a) \(\frac{x}{7}=\frac{18}{14}\)
=> x.14 = 7.18
x.14 = 126
x = 126:14
x = 9
b) \(\frac{6}{x}=\frac{7}{4}\)
=> \(x=\frac{6.4}{7}=\frac{24}{7}\)
c) Theo mình đề thế này mới đúng \(\frac{5,7}{0,35}=\frac{\left(-x\right)}{0,45}\)
=> 5,7.0,45 = 0,35.(-x)
2,565 = 0,35.(-x)
(-x) = 2,565:0,35
(-x) = 513/70
=> -x = -513/70
x = 513/70
Bài 2 : Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{x-y+z}{2-4+6}=\frac{8}{4}=2\)
\(\frac{x}{2}=2\)
x = 2.2
x = 4
\(\frac{y}{4}=2\)
y = 2.4
y = 8
\(\frac{z}{6}\) = 2
z = 2.6
z = 12
Vậy x=4 ; y=8 và z=12
2) Đề thiếu rồi bạn.
3)
Ta có:
\(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\) và \(x.y.z=20\)
Đặt \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=12k\\y=9k\\z=5k\end{matrix}\right.\)
Có: \(x.y.z=20\)
=> \(12k.9k.5k=20\)
=> \(540.k^3=20\)
=> \(k^3=20:540\)
=> \(k^3=\frac{1}{27}\)
=> \(k=\frac{1}{3}.\)
Với \(k=\frac{1}{3}.\)
\(\Rightarrow\left\{{}\begin{matrix}x=12.\frac{1}{3}=4\\y=9.\frac{1}{3}=3\\z=5.\frac{1}{3}=\frac{5}{3}\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(4;3;\frac{5}{3}\right).\)
Chúc bạn học tốt!
Ta có: \(\frac{x}{5}=\frac{y}{6}=>\frac{x}{40}=\frac{y}{48}\) (1).
\(\frac{y}{8}=\frac{z}{7}=>\frac{y}{48}=\frac{z}{42}\) (2).
Từ (1) và (2) => \(\frac{x}{40}=\frac{y}{48}=\frac{z}{42}\) và \(x+y-z=69.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{40}=\frac{y}{48}=\frac{z}{42}=\frac{x+y-z}{40+48-42}=\frac{69}{46}=\frac{3}{2}.\)
\(\left\{{}\begin{matrix}\frac{x}{40}=\frac{3}{2}=>x=\frac{3}{2}.40=60\\\frac{y}{48}=\frac{3}{2}=>y=\frac{3}{2}.48=72\\\frac{z}{42}=\frac{3}{2}=>z=\frac{3}{2}.42=63\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(60;72;63\right).\)
Chúc bạn học tốt!
\(\frac{x}{5}=\frac{y}{6}\Rightarrow\frac{x}{20}=\frac{y}{24};\frac{y}{8}=\frac{z}{7}\Rightarrow\frac{y}{24}=\frac{z}{21}\Rightarrow\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{23}=\frac{69}{23}=3\Rightarrow\left\{{}\begin{matrix}x=20.3=60\\y=24.3=72\\z=21.3=63\end{matrix}\right.\)
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\); \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
\(\Rightarrow x=20;y=30;z=42\)
Ta có : \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)(1)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\) (2)
Từ (1) và (2) => \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Ta có : \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
Nên : \(\frac{x}{10}=2\Rightarrow x=20\)
\(\frac{y}{15}=2\Rightarrow y=30\)
\(\frac{z}{21}=2\Rightarrow z=42\)
Vậy x = 20 , y = 30 , z = 42 .
Ta có: \(\frac{x}{5}=\frac{y}{6}\) => \(\frac{x}{35}=\frac{y}{42}\)
\(\frac{y}{7}=\frac{z}{8}\) => \(\frac{y}{42}=\frac{z}{48}\)
=> \(\frac{x}{35}=\frac{y}{42}=\frac{z}{48}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{35}=\frac{y}{42}=\frac{z}{48}=\frac{x+y+z}{35+42+48}=\frac{250}{125}=2\)
=> \(\hept{\begin{cases}\frac{x}{35}=2\\\frac{y}{42}=2\\\frac{z}{48}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.35=70\\y=2.42=84\\z=2.48=96\end{cases}}\)
vậy ...