Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Thiếu đề
b) Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) => \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x+3y+2z}{4+6+6}=\frac{14}{16}=\frac{7}{8}\)
=> \(\hept{\begin{cases}\frac{x}{1}=\frac{7}{8}\\\frac{y}{2}=\frac{7}{8}\\\frac{z}{3}=\frac{7}{8}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{7}{8}.1=\frac{7}{8}\\y=\frac{7}{8}.2=\frac{7}{4}\\z=\frac{7}{8}.3=\frac{21}{8}\end{cases}}\)
Vậy ...
Sửa lại xíu :
\(a)\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và \(x-2y+3z=14\)
\(b)\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)và \(4x+3y+2z=36\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
\(\Rightarrow\frac{x-1}{2}=\frac{2\left(y-2\right)}{2\cdot3}=\frac{3\left(z-3\right)}{3\cdot4}\)
\(\Rightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
theo tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{\left(x-1\right)-\left(2y-4\right)+\left(3z-9\right)}{2-6+12}=\frac{x-1-2y+4+3z-9}{8}\)
\(=\frac{\left(x-2y+3z\right)+\left(-1+4-9\right)}{8}=\frac{14+\left(-6\right)}{8}=\frac{8}{8}=1\)
\(\Rightarrow\hept{\begin{cases}x=1\cdot2+1=3\\y=1\cdot3+2=5\\z=1\cdot4+3=7\end{cases}}\)
vậy_
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: x/2 = y/3 => x/8 = y/12 (1)
y/4 = z/5 => y/12 = z/15 (2)
Từ (1) và (2) => x/8 = y/12 = z/15
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/8 = y/12 = z/15 = x + y - z / 8 + 12 - 15 = 10/5 = 2
x/8 = 2 => x = 2 . 8 = 16
y/12 = 2 => y = 2 . 12 = 24
z/15 = 2 => z = 2 . 15 = 30
Vậy x = 16; y = 24 và z = 30
b) Ta có: x/2 = y/3 => x/10 = y/15 (1)
y : 5 = z : 4 => y/5 = z/4 => y/15 = z/12 (2)
Từ (1) và (2) => x/10 = y/15 = z/12
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/10 = y/15 = z/12 = x - y + z / 10 - 15 + 12 = -49/7 = -7
x/10 = -7 => x = -7 . 10 = -70
y/15 = -7 => y = -7 . 15 = -105
z/12 = -7 => z = -7 . 12 = -84
Vậy x = -70; y = -105 và z = -84
c) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/2 = y/3 = z/4 = 2y/6 = 3z/12 = x + 2y - 3z / 2 + 6 - 12 = -20/-4 = 5
x/2 = 5 => x = 5 . 2 = 10
y/3 = 5 => y = 5 . 3 = 15
z/4 = 5 => z = 5 . 4 = 20
Vậy x = 10; y = 15 và z = 20.
![](https://rs.olm.vn/images/avt/0.png?1311)
Cách 1: Nhân tỉ số thứ hai,thứ 3 của 1 lần lượt với và 3 ta được :
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-2y+3z-6}{2-6+12}=\frac{14-6}{8}=1\)
Suy ra : x - 1 = 2.1 => x = 3 ; y - 2 = 3.1 => y = 5 ; z - 3 = 4.1 => z = 7
Cách 2 : Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\), trong đó \(k\inℤ\)
=> x = 2k + 1 , y = 3k + 2 . z = 4k + 3
Thay 2 vào 1 ta có : 2k + 1 -6k - 4 + 12k + 9 = 14 => 8k + 6 = 14 => 8k = 8 =.> k = 1
=> x = 2.1 + 1 = 3 ; y = 3.1 + 2 = 5 ; z = 4.1 + 3 = 7
![](https://rs.olm.vn/images/avt/0.png?1311)
c)\(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và\(2x^2+2y^2-3z^2=-100\)
đặt\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Rightarrow\frac{x}{3}=k\Rightarrow x=3k\)
\(\Rightarrow\frac{y}{4}=k\Rightarrow y=4k\)
\(\Rightarrow\frac{z}{5}=k\Rightarrow z=5k\)
mà\(2x^2+2y^2-3z^2=-100\)
thay\(6k^2+8k^2-15k^2=-100\)
\(k^2\left(6+8-15\right)=-100\)
\(k^2.\left(-1\right)=-100\)
\(k^2=100\)
\(\Rightarrow k=\pm10\)
bạn thế vào nha
Ta có : \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{x-1}{2}=\frac{2\left(y-2\right)}{2.3}=\frac{3\left(z-3\right)}{3.4}\)(Bằng cách nhân tử và mẫu cho 1 số).
Áp dụng dãy tỉ số bằng nhau , ta được :
\(\frac{x-1}{2}=\frac{2.\left(y-2\right)}{2.3}=\frac{3.\left(z-3\right)}{3.4}=\frac{\left(x-1\right)-2\left(y-2\right)+3\left(z-3\right)}{2-2.3+3.4}=\frac{x-1-2y+4+3z-9}{8}=\frac{\left(x-2y+3z\right)-1+4-9}{8}\).
Mà \(x-2y+3z=0\) (gt).
\(\Leftrightarrow\frac{\left(x-2y+3z\right)-1+4-9}{8}=\frac{0-1+4-9}{8}=\frac{-3}{4}\).
Do đó : \(\frac{x-1}{2}=\frac{-3}{4}\Leftrightarrow x=-0.5\) .
\(\frac{2\left(y-2\right)}{2.3}=\frac{-3}{4}\Leftrightarrow y=-0.25\) .
\(\frac{3\left(z-3\right)}{3.4}=\frac{-3}{4}\Leftrightarrow z=0\) .
Vậy : x=-0.5 ; y=-0.25 ; z=0
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
và x-2y+3z=0
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{0-1+4-9}{8}=-\frac{3}{4}\)
=>\(\frac{x-1}{2}=-\frac{3}{4}\Leftrightarrow x=-\frac{1}{2}\)
Tương tự y= -1/4
z=0