K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2020

\(\frac{3x}{4}=\frac{4y}{5}=\frac{6z}{7}\Rightarrow\)\(\frac{3x}{4}\cdot\frac{1}{12}=\frac{4y}{5}\cdot\frac{1}{12}=\frac{6z}{7}\cdot\frac{1}{12}\Rightarrow\)\(\frac{x}{16}=\frac{y}{15}=\frac{z}{14}=\frac{x+y+z}{16+15+14}=-\frac{45}{45}=-1\)

\(\Rightarrow x=-16;y=-15;z=-14\)

\(\frac{3}{4}x=\frac{4}{5}y=\frac{6}{7}z\)

\(\Rightarrow\frac{3x}{4}=\frac{4y}{5}=\frac{6z}{7}\)

\(\Rightarrow\frac{3x}{48}=\frac{4y}{60}=\frac{6z}{84}\)

\(\Rightarrow\frac{x}{16}=\frac{y}{15}=\frac{z}{14}\)

+)ADTC của dãy tỉ số bằng nhau ta có:

\(\frac{x}{16}=\frac{y}{15}=\frac{z}{14}=\frac{x+y+z}{16+15+14}=\frac{-45}{45}=-1\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{16}=-1\\\frac{y}{15}=-1\\\frac{z}{14}=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-1.16\\y=-1.15\\z=-1.14\end{cases}\Rightarrow}}\hept{\begin{cases}x=-16\\y=-15\\z=-14\end{cases}}\)

Vậy x=-16;y=-15;z=-14

Chúc bạn học tốt

30 tháng 11 2015

\(\frac{3}{4}x=\frac{4}{5}y=\frac{6}{7}z\Leftrightarrow\frac{x}{\frac{4}{3}}=\frac{y}{\frac{5}{4}}=\frac{z}{\frac{7}{6}}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có:

\(\frac{x}{\frac{4}{3}}=\frac{y}{\frac{5}{4}}=\frac{z}{\frac{7}{6}}=\frac{z+y+z}{\frac{4}{3}+\frac{5}{4}+\frac{7}{6}}=\frac{-45}{\frac{15}{4}}=-12\)

=> x = 4/3 . (-12) = -16

=> y = 5/4 . (-12) = -15

=> z = 7/6 . (-12) =-14

30 tháng 11 2015

\(\frac{3}{4}x=\frac{4}{5}y\Rightarrow\frac{x}{\frac{4}{5}}=\frac{y}{\frac{3}{4}}\left(1\right)\)

\(\frac{4}{5}y=\frac{6}{7}z\Rightarrow\frac{y}{\frac{6}{7}}=\frac{z}{\frac{4}{5}}\left(2\right)\)

Từ (1) và (2) => \(\frac{x}{\frac{24}{35}}=\frac{y}{\frac{9}{14}}=\frac{z}{\frac{3}{5}}\).

Theo t/c dãy tỉ số = nhau:

\(\frac{x}{\frac{24}{35}}=\frac{y}{\frac{9}{14}}=\frac{z}{\frac{3}{5}}=\frac{x+y+z}{\frac{24}{35}+\frac{9}{14}+\frac{3}{5}}=-\frac{45}{\frac{27}{14}}=-\frac{70}{3}\).

=> \(\frac{x}{\frac{24}{35}}=-\frac{70}{3}\Rightarrow x=-\frac{70}{3}.\frac{24}{35}=-16\)

=>\(\frac{y}{\frac{9}{14}}=-\frac{70}{3}\Rightarrow y=-\frac{70}{3}.\frac{9}{14}=-15\)

=>\(\frac{z}{\frac{3}{5}}=-\frac{70}{3}\Rightarrow z=-\frac{70}{3}.\frac{3}{5}=-14\)

Vậy x=-16; y=-15; z=-14.

11 tháng 8 2016

1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)

\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)

=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

=>\(x=3\cdot20=60\)

    \(y=3\cdot24=72\)

    \(z=3\cdot21=63\)

11 tháng 8 2016

3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)

=> \(x=1\cdot15=15\)

     \(y=1\cdot7=7\)

     \(z=1\cdot3=3\)

     \(t=1\cdot1=1\)

26 tháng 8 2015

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{18}{9}=2\)

x/2=2=>4

y/3=2=>6

z/4=2=>8

\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=\frac{x-y+z}{5-6+7}=\frac{36}{6}=6\)

x/5=6=>30

y/6=6=>36

z/7=6=>42

26 tháng 8 2015

\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=\frac{x-y+z}{5-6+7}=\frac{36}{6}=6\)                                                                                                        =>x=6.5=30;y=6.6=36;z=6.7=42

9 tháng 7 2019

\(a,\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

\(\frac{x}{10}=2\Rightarrow x=10.2=20\)

\(\frac{y}{6}=2\Rightarrow y=2.6=12\)

\(\frac{z}{21}=2\Rightarrow z=21.2=42\)

\(d,\frac{x}{2}=\frac{y}{3}=k\)\(\Rightarrow x=2k;y=3k\)

\(\Rightarrow ab=2k.3k=6k^2=54\)

\(\Rightarrow k^2=9\Leftrightarrow k=3\)

\(\frac{x}{2}=3\Rightarrow x=6\)

\(\frac{y}{3}=3\Rightarrow y=9\)

9 tháng 7 2019

a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\)   =>  \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)

Vậy x = 20; y = 12; z = 42

b) Ta có: \(\frac{x}{3}=\frac{y}{4}\) => \(\frac{x}{15}=\frac{y}{20}\)

          \(\frac{y}{5}=\frac{z}{7}\)  => \(\frac{y}{20}=\frac{z}{28}\)

=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{125}{62}=\frac{125}{62}\)

=> \(\hept{\begin{cases}\frac{x}{15}=\frac{125}{62}\\\frac{y}{20}=\frac{125}{62}\\\frac{z}{28}=\frac{125}{62}\end{cases}}\)  =>  \(\hept{\begin{cases}x=\frac{125}{62}.15=\frac{1875}{62}\\y=\frac{125}{62}.20=\frac{1250}{31}\\z=\frac{125}{62}.28=\frac{1750}{31}\end{cases}}\)

Vậy ...

7 tháng 10 2018

Ta có :

\(\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}\)

\(=\)\(\frac{2\left(x+1\right)}{4}=\frac{3\left(y+3\right)}{12}=\frac{4\left(z+5\right)}{24}\)

Theo tính chất của dãy tỉ số bằng nhau,ta có :

\(\frac{2\left(x+1\right)}{4}=\frac{3\left(y+3\right)}{12}=\frac{4\left(z+5\right)}{24}\)\(=\frac{\left(2x+3y+4z\right)+\left(2+3+5\right)}{4+12+24}\)\(=\)\(\frac{9+10}{40}\)\(=\frac{19}{40}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{19}{40}\\y=\frac{19}{40}\\z=\frac{19}{40}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{19}{40}\cdot2\\y=\frac{19}{40}\cdot4\\z=\frac{19}{40}.6\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=0,95\\y=1,9\\z=2,85\end{cases}}\)

Vậy ...

P/s : sai thì thôi =.=

31 tháng 8 2021

a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)

b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)

\(\Rightarrow x=18;y=24;z=30\)

31 tháng 8 2021

c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)

\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)

d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)

\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)

16 tháng 7 2018

a) Ta có: x/10=y/6=z/24 và 5x+y—2x=28

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

x/10=y/6=z/24=5x/50+y/6–2x/48= 5x+y—2x/50+6–48=28/ 8

Ta được: x= 10.28/8=35

y= 6.28/8=21

z=24.28/8=84

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

31 tháng 8 2021

\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\) và \(2x+3y-z=186\)

Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}\times\frac{1}{5}=\frac{y}{4}\times\frac{1}{5}=\frac{x}{15}=\frac{y}{20}\left(1\right)\)

Từ \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}\times\frac{1}{4}=\frac{z}{7}\times\frac{1}{4}=\frac{y}{20}=\frac{z}{28}\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=k\)

\(\Rightarrow\hept{\begin{cases}x=15k\\y=20k\\z=28k\end{cases}}\)

Lại có : \(2x+3y-z=186\)

Thay vào ta có :

\(2.15k+3.20k-28k=186\)

\(30k+60k-28k=186\)

\(62k=186\)

\(k=3\)

Thay vào ta được :

\(\Rightarrow\hept{\begin{cases}x=15.3=45\\y=20.3=60\\z=28.3=84\end{cases}}\)

Vậy .....

25 tháng 4

1) Tìm x, biết:

a) x:2=y:5 và x+y=21

b) x2=y2𝑥2=𝑦2và x.y=54

c) x:7=y:5 và y-x=12

2) Tím các số x, y, z, biết:

a) x10=y6=z21𝑥10=𝑦6=𝑧21và 5x+y-2z=28

b) x3=y4𝑥3=𝑦4y5=z7𝑦5=𝑧7và 2x+3y-z=124

c) 3x=2y; 7y=5z và x-y+z=32

d) 2x=3x=5z và x+y-z=95

16 tháng 11 2018

Theo đề bài: \(\hept{\begin{cases}\frac{x}{3}=\frac{y}{5}\\\frac{x}{4}=\frac{z}{7}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x}{12}=\frac{y}{20}\\\frac{x}{12}=\frac{z}{21}\end{cases}}\Leftrightarrow\frac{x}{12}=\frac{y}{20}=\frac{z}{21}}\)

Theo t/c dãy tỉ số bằng nhau,ta có: \(\frac{x}{12}=\frac{y}{20}=\frac{z}{21}=\frac{x+y-z}{12+20-21}=\frac{110}{11}=10\)

Suy ra \(x=10.12=120\)\(y=10.20=200\)\(z=10.21=210\)

Vậy ...