\(\frac{2x-3y}{2}=\frac{4y-2z}{3}=\frac{3z-4x}{4}và3x+2y+z=17\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2019

a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}=\frac{x-y-z}{2-3+4}=\frac{27}{3}=9\)

=> \(\hept{\begin{cases}\frac{x}{2}=9\\\frac{y}{4}=9\\\frac{z}{-4}=9\end{cases}}\)  =>   \(\hept{\begin{cases}x=9.2=18\\y=9.3=27\\z=9.\left(-4\right)=-36\end{cases}}\)

Vậy ...

a, ÁP DỤNG DÃY TỈ SỐ BĂNG NHAU TA CÓ

\(\frac{x}{2}=\frac{y}{3}=\frac{x}{-4}=\frac{x-y-z}{2-3+4}=\frac{27}{3}=9\)

\(\Rightarrow\hept{\begin{cases}x=9.2=18\\y=9.3=27\\z=9.\left(-4\right)=-36\end{cases}}\)

https://i.imgur.com/eiGia4V.jpg
22 tháng 3 2020
https://i.imgur.com/io4YZ8T.jpg
4 tháng 10 2016

Ta có:  \(\frac{4}{3x-2y}=\frac{3}{2z-4x}=\frac{2}{4y-3z}\)

\(\Rightarrow\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)

\(=\frac{4.\left(3x-2y\right)}{4.4}=\frac{3.\left(2z-4x\right)}{3.3}=\frac{2.\left(4y-3z\right)}{2.2}\)

\(=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{\left(12x-8y\right)+\left(6z-12x\right)+\left(8y-6z\right)}{16+9+4}=\frac{0}{29}=0\)

\(\Rightarrow\begin{cases}12x-8y=0\\6z-12x=0\\8y-6z=0\end{cases}\)\(\Rightarrow\begin{cases}12x=8y\\6z=12x\\8y=6z\end{cases}\)\(\Rightarrow12x=8y=6z\)

\(\frac{x}{\frac{1}{12}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{6}}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x}{\frac{1}{12}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{6}}=\frac{x+y-z}{\frac{1}{12}+\frac{1}{8}-\frac{1}{6}}=\frac{-10}{\frac{1}{24}}=-10.24=-240\)

\(\Rightarrow\begin{cases}x=-240.\frac{1}{12}=-20\\y=-240.\frac{1}{8}=-30\\z=-240.\frac{1}{6}=-40\end{cases}\)

Vậy x = -20; y = -30; z = -40

5 tháng 10 2016

Giỏi nhở~