\(\frac{x}{5}=\frac{y}{6};\frac{y}{2}=\frac{z}{3}\)va 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2019

a) Xem lại đề

b) Ta có: \(2x=4y=5z\)=> \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}\) => \(\frac{2x}{1}=\frac{3y}{\frac{3}{4}}=\frac{z}{\frac{1}{5}}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{2x}{1}=\frac{3y}{\frac{3}{4}}=\frac{z}{\frac{1}{5}}=\frac{2x-3y-z}{1-\frac{3}{4}-\frac{1}{5}}=\frac{1}{\frac{1}{20}}=20\)

=> \(\hept{\begin{cases}\frac{x}{\frac{1}{2}}=20\\\frac{y}{\frac{1}{4}}=20\\\frac{z}{\frac{1}{5}}=20\end{cases}}\) => \(\hept{\begin{cases}x=20.\frac{1}{2}=10\\y=20.\frac{1}{4}=5\\z=20.\frac{1}{5}=4\end{cases}}\)

Vậy x = 10; y = 5 và z = 4

26 tháng 7 2019

a)\(\frac{x}{5}=\frac{y}{6};\frac{y}{2}=\frac{z}{3}\)va \(x^3-2x^2y+z^3\)

29 tháng 12 2016

a)

\(2x=3y\Rightarrow y=\frac{2x}{3}\)

\(!x+2y!=5\Rightarrow\orbr{\begin{cases}x+2y=5\\x+2y=-5\end{cases}\Rightarrow\orbr{\begin{cases}x+2.\frac{2}{3}x=5\Rightarrow x=\frac{15}{7}\\x+2.\frac{2}{3}x=-5\Rightarrow x=-\frac{15}{7}\end{cases}}}\)\(\Rightarrow\orbr{\begin{cases}y=\frac{10}{7}\\y=\frac{-10}{7}\end{cases}}\Rightarrow\orbr{\begin{cases}z=\frac{6}{7}\\z=\frac{6}{7}\end{cases}}\)

(x,y,z)=(15/7,10/7,6/7)

(x,y,z)=(-15/7,-10/7,-6/7)

13 tháng 9 2020

Ta có:\(\frac{x}{3}=\frac{y}{4}\)\(\Rightarrow\frac{x}{9}=\frac{y}{12}\)

\(\frac{y}{3}=\frac{z}{5}\)\(\Rightarrow\frac{y}{12}=\frac{z}{20}\)

Suy ra:\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

Đặt\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=k\)

\(\Rightarrow\hept{\begin{cases}x=9k\\y=12k\\z=20k\end{cases}}\)

\(2x-3y+z=6\)

\(\Rightarrow2.9k-3.12k+20k=6\)

\(\Leftrightarrow18k-36k+20k=6\)

\(\Leftrightarrow2k=6\)

\(\Leftrightarrow k=3\)

\(\Rightarrow\hept{\begin{cases}x=3.9=27\\y=3.12=36\\z=3.20=60\end{cases}}\)(Thỏa mãn)

Vậy\(\hept{\begin{cases}x=27\\y=36\\z=60\end{cases}}\)

Linz

13 tháng 9 2020

Ta có : \(\hept{\begin{cases}\frac{x}{3}=\frac{y}{4}\\\frac{y}{3}=\frac{z}{5}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{9}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{20}\end{cases}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}}\)

=> \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)(dãy tỉ số bằng nhau)

=> x = 27 ; y = 36 ; z = 60

6 tháng 7 2016

2)  Ta có: \(\hept{\begin{cases}3x=2y;7y=5z\\x-y+z=32\end{cases}\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}.}\)

                                                                                           \(\Rightarrow\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

Vậy \(\hept{\begin{cases}x=2.10=20\\y=2.15=30\\z=2.21=42\end{cases}}\)

Ủng hộ nha m.n

7 tháng 8 2015

\(\frac{x}{1}=\frac{4x}{4};\frac{y}{2}=\frac{3y}{6};\frac{z}{3}=\frac{2z}{6}\)

mà \(\frac{x}{1}=\frac{y}{3}=\frac{z}{2}\) nên \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}\)

áp dụng t/c dãy các tỉ số bằng nhau ta có 

 \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x-3y+2z}{4-6+6}=\frac{36}{4}=9\)

nếu \(\frac{x}{1}=9=>x=9\)

        

12 tháng 7 2019

a

Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)

\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)

Thay vào,ta được:

\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)

\(\Leftrightarrow4k+2+9k+6-4k-3=50\)

\(\Leftrightarrow9k+5=50\)

\(\Leftrightarrow9k=45\)

\(\Leftrightarrow k=5\)

12 tháng 7 2019

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)

\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)

\(\Rightarrow x=2\cdot2+1=5\)

\(y=4\cdot2-3=5\)

\(z=2\cdot6+5=17\)

Câu c tương tự như câu 1

28 tháng 9 2018

dễ vãi

18 tháng 7 2019

a)Ta có : 2x+2y-z-7=0 => 2x+2y-z=7

Ta có : \(x=\frac{y}{2}=>\frac{x}{2}=\frac{y}{4}\)

Mà \(\frac{y}{4}=\frac{z}{5}\)nên  \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}=\frac{2x+2y-z}{4+8-5}=\frac{7}{7}=1\)

Từ \(\frac{x}{2}=1=>x=2\)

Từ\(\frac{y}{4}=1=>y=4\)

Từ \(\frac{z}{5}=1=>z=5\)

 \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)

18 tháng 7 2019

Cam on

18 tháng 6 2019

#)Giải :

a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)

Vậy x = 45; y = 60; z = 84

b) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)

\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)

Thay (1) vào (+) ta được :

\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)

\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)

Thay (2) và (+2) ta được :

\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)

\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

18 tháng 6 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)

Mà \(xyz=810\Rightarrow30k^3=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

Thay vào tìm x,,z.