K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2019

a) 2009 - |x - 2009| = x

 => |x - 2009| = 2009 - x (1)

ĐK : \(2009-x\ge0\Leftrightarrow x\le2009\)

Ta có (1) <=> \(\orbr{\begin{cases}x-2009=2009\\x-2009=-2009\end{cases}\Rightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=2009\left(\text{loại}\right)\end{cases}}}\)

Vậy x = 0

b) Ta có : \(\hept{\begin{cases}\left(2x-1\right)^{2018}\ge0\forall x\\\left(y-\frac{2}{5}\right)^{2020}\ge0\forall y\\\left|x+y-z\right|\ge0\forall x;y;z\end{cases}}\Rightarrow\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2020}+\left|x+y-z\right|\ge0\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=x+y\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}}\)

22 tháng 12 2019

\(\text{b)}\)

\(\text{Ta có: }\text{ }\left(2x-1\right)^{2018}\ge0\)

             \(\left(y-\frac{2}{5}\right)^{2020}\ge0\)

        \(\text{ và}\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)=0\)

\(\text{Dấu "=" xảy ra khi:}\)   

     \(\left(2x-1\right)^{2018}=0\) 

\(\Rightarrow2x-1\)         \(=0\)

\(\Rightarrow2x\)                  \(=1\)

\(\Rightarrow x\)                     \(=\frac{1}{2}\)

\(\text{ và:}\left(y-\frac{2}{5}\right)^{2020}=0\)

\(\Rightarrow y-\frac{2}{5}\)          \(=0\)

\(\Rightarrow y\)                      \(=\frac{2}{5}\)

\(\text{Nhớ k cho mình với nghe}\)     :33

10 tháng 11 2016

Bài 1:

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)

Ta thấy:

\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)

\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\frac{10}{11}=0\)

\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)

 

 

10 tháng 11 2016

Bài 2:

Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)

20 tháng 10 2017

a)

\(2009-\left|x-2009\right|=x\)

\(\Rightarrow\left|x-2009\right|=-\left(x-2009\right)\)

\(\Rightarrow x-2009\le0\)

\(\Rightarrow x\le2009\)

Vậy \(x\le2009\)

b)

Vì \(\left(2x+1\right)^{2008}\ge0\forall x\)

\(\left(y-\dfrac{2}{5}\right)^{2008}\ge0\forall y\)

\(\left|x+y-z\right|\ge0\forall x,y,z\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y-z\right|\ge0\forall x,y,z\)

Mà theo đề bài :

\(\left(2x+1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y-z\right|=0\)

\(\Rightarrow\left(2x+1\right)^{2008}=0;\left(y-\dfrac{2}{5}\right)^{2008}=0;\left|x+y-z\right|=0\)

*) Với \(\left(2x+1\right)^{2008}=0\)

\(\Rightarrow2x+1=0\)

\(\Rightarrow2x=-1\)

\(\Rightarrow x=\dfrac{-1}{2}\)

*) Với \(\left(y-\dfrac{2}{5}\right)^{2008}=0\)

\(\Rightarrow y-\dfrac{2}{5}=0\)

\(\Rightarrow y=\dfrac{2}{5}\)

*) Với \(\left|x+y-z\right|=0\)

\(\Rightarrow x+y-z=0\)

\(\Rightarrow\dfrac{-1}{2}+\dfrac{2}{5}-z=0\)

\(\Rightarrow\dfrac{-1}{10}-z=0\)

\(\Rightarrow z=\dfrac{-1}{10}\)

Vậy \(x=\dfrac{-1}{2};y=\dfrac{2}{5};z=\dfrac{-1}{10}\)

20 tháng 10 2017

a, 2009 - \(\left|x-2009\right|\) = x

=> \(\left|x-2009\right|\) = 2009 - x

=> \(\left[{}\begin{matrix}x-2009=2009-x\\x-2009=-2009-x\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}2x=4018\\2x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2009\\x=0\end{matrix}\right.\)

Vậy x \(\in\)n { 2009 ; 0 }

8 tháng 4 2017

1. a) \(2009-\left|x-2009\right|=x\)

\(\Rightarrow\left|x-2009\right|=2009-x\)

\(\Rightarrow\left|x-2009\right|=-\left(x-2009\right)\)

\(\Rightarrow x-2009\le0\)

\(\Rightarrow x\le2009\)

Vậy \(x\le2009.\)

b) Ta có: \(\left[{}\begin{matrix}\left(2x-1\right)^{2008}\ge0\forall x\\\left(y-\dfrac{2}{5}\right)^{2008}\ge0\forall y\\\left|x+y-z\right|\ge0\forall x,y,z\end{matrix}\right.\) \(\Rightarrow\left(2x-1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y-z\right|\ge0\forall x,y,z\)

Dấu \("="\) xảy ra khi \(\left[{}\begin{matrix}\left(2x-1\right)^{2008}=0\\\left(y-\dfrac{2}{5}\right)^{2008}=0\\\left|x+y-z\right|=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{2}{5}\\z=\dfrac{9}{10}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{2}{5}\\z=\dfrac{9}{10}\end{matrix}\right.\).

8 tháng 4 2017

Bạn kia làm câu 1 rồi thì mình làm câu 2 nhé!

2. Ta có:\(\dfrac{3a-2b}{5}=\dfrac{2c-5a}{3}=\dfrac{5b-3c}{2}\)

\(\Rightarrow\dfrac{15a-10b}{25}=\dfrac{6c-15a}{9}=\dfrac{5b-3c}{2}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{15a-10b}{25}=\dfrac{6c-15a}{9}=\dfrac{15a-10b+6c-15a}{25+9}\)=\(\dfrac{-10b+6c}{34}=\dfrac{-5b+3c}{17}\)

\(\Rightarrow\dfrac{-5b+3c}{17}=\dfrac{5b-3c}{2}\Rightarrow5b-3c=0\)

=> 5b=3c =>\(\left\{{}\begin{matrix}b=\dfrac{3}{5}c\\a=\dfrac{2}{5}c\end{matrix}\right.\)

=>\(\dfrac{3}{5}c+\dfrac{2}{5}c+c=-50\)

=> \(c\left(\dfrac{3}{5}+\dfrac{2}{5}+1\right)=-50\)

=> 2c = -50

=> c= -25

=>\(\left\{{}\begin{matrix}b=-25.\dfrac{3}{5}=-15\\a=-25.\dfrac{2}{5}=-10\end{matrix}\right.\)

Vậy a= -10; b= -15; c= -25

a)\(2019-\left|x-2019\right|=x\)

\(\Rightarrow2019-x=\left|x-2019\right|\)

=>\(\left|x-2019\right|=-\left(x-2019\right)\)

=>\(x-2019\le0\)

=>\(x\le2019\)

b) Vì \(\left(2x-1\right)^{2018}\ge0\forall x\)

        \(\left(y-\frac{2}{5}\right)^{2018}\ge0\forall y\)

\(\left|x+y-z\right|\ge0\forall x,y,z\)

=> \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|\ge0\forall x,y,z\)

mà \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}}\)=>\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}\)

6 tháng 11 2019

a, Ta có:

\(\left|x-2019\right|=\orbr{\begin{cases}x-2019\ge0\Rightarrow x\ge2019\\-x+2019< 0\Rightarrow x< 2019\end{cases}}\)

Xét x<2019 thì |x-2019|=-x+2019

Khi đó: 2019-(-x+2019)=x

\(\Leftrightarrow\)-x+2019=2019-x

\(\Leftrightarrow\)-x+2019+x=2019

\(\Leftrightarrow\)0x+2019=2019

\(\Leftrightarrow\)0x=0     (thỏa mãn)

Xét 2019\(\le\)x thì |x-2019|=x-2019

Khi đó 2019-(x-2019)=x

\(\Leftrightarrow\)2019-x+2019=x

\(\Leftrightarrow\)4038-x=x

\(\Leftrightarrow\)4038=2x

\(\Leftrightarrow\)x=2019(thỏa mãn)

Vậy .......................................................!!!

23 tháng 1 2017

Ta thấy \(\left\{\begin{matrix}\left(2x-1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\\\left|x+y-z\right|\ge0\end{matrix}\right.\ge0\)

\(\Rightarrow\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y-z\right|\ge0\)

Mà theo đề ra

\(\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y-z\right|=0\)

\(\Rightarrow\left\{\begin{matrix}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}2x=1\\y=\frac{2}{5}\\z=x+y\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{2}{5}+\frac{1}{2}=\frac{9}{10}\end{matrix}\right.\)

Vậy \(x=\frac{1}{2}\) y=\(\frac{2}{5}\)và z=\(\frac{9}{10}\)

23 tháng 1 2017

Bạn thật tốthihi

25 tháng 9 2018

Ta có: (2x-1)2018≥0 ; (y-2/5)2018≥0 ; |x+y-z|≥0

=>\(\hept{\begin{cases}\left(2x-1\right)^{2018}=0\\\left(y-\frac{2}{5}\right)^{2018}=0\\\left|x+y-z\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}}\)

Chúc bạn học tốt!

25 tháng 9 2018

Ta có : 

\(\left(2x-1\right)^{2018}\ge0\)

\(\left(y-\frac{2}{5}\right)^{2018}\ge0\)

\(\left|x+y-z\right|\ge0\)

Mà \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}+\left|x+y-z\right|=0\) ( Giả thiết ) 

\(\Rightarrow\)\(\hept{\begin{cases}\left(2x-1\right)^{2018}=0\\\left(y-\frac{2}{5}\right)^{2018}=0\\\left|x+y-z\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}}\)

Vậy \(x=\frac{1}{2}\)\(;\)\(y=\frac{2}{5}\) và \(z=\frac{9}{10}\)

Chúc bạn học tốt ~ 

15 tháng 8 2018

a) \(2009-\left|x-2009\right|=x\)

* Nếu \(x-2009\ge0\Rightarrow x\ge2009\)

\(2009-\left(x-2009\right)=x\)

\(2009-x+2009=x\)

\(4018=2x\)

\(x=2009\)(TMĐK)

* Nếu \(x-2009< 0\Rightarrow x< 2009\)

\(2009-\left[-\left(x-2009\right)\right]=x\)

\(2009-\left(-x+2009\right)=x\)

\(2009+x-2009=x\)

\(0x=0\)

Nên \(x\in R\) trừ \(x< 2009\)

Vậy .......

16 tháng 8 2018

Bạn làm đc câu b, k ạ

20 tháng 10 2017

Ta luôn có :|x-2009|\(\ge\)0(1)

Mà :2009-|x-2009|=x nên 2009\(\ge\)x(2)

(1)(2) nên ta có x \(\in\){0;1;2;3;4;5;...;2009}