Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
Bài 1:
Ta có:
\(y-x=25\Rightarrow y=25+x\)
Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)
\(7x=100+4x\)
\(\Rightarrow7x-4x=100\)
\(3x=100\)
\(x=\frac{100}{3}\)
bài 1 :
Ta có: 7x=4y ⇔ x/4=y/7
áp dụng tính chất dãy tỉ số bằng nhau ta có
x/4=y/7=(y-x)/(7-4)=100/3
⇒x= 4 x 100/3=400/3 ; y = 7 x 100/3=700/3
bài 2
ta có x/5 = y/6 ⇔ x/20=y/24
y/8 = z/7 ⇔ y/24=z/21
⇒x/20=y/24=z/21
ADTCDTSBN(bài 1 có)
x/20=y/24=z/21=(x+y)/(20+24)=69/48=23/16
⇒x= 20 x 23/16 = 115/4
y= 24x 23/16=138/2
z=21x23/16=483/16
a,\(\frac{x}{4}=\frac{y}{2}=\frac{z}{3}\Leftrightarrow\frac{3x}{12}=\frac{2y}{4}=\frac{4z}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{3x}{12}=\frac{2y}{4}=\frac{4z}{12}=\frac{3x-2y+4z}{12-4+12}=\frac{20}{20}=1\)
Suy ra:\(\hept{\begin{cases}\frac{x}{4}=1\\\frac{y}{2}=1\\\frac{z}{3}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=2\\z=3\end{cases}}\)
b, Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{6}=\frac{x-y}{2-6}=\frac{10}{-4}=-\frac{5}{2}\)
Suy ra:\(\hept{\begin{cases}\frac{x}{2}=-\frac{5}{2}\\\frac{y}{6}=-\frac{5}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-15\end{cases}}}\)
a) Đặt\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}=k.\)
Ta có : x = 5k ; y = 2k ; z = 3k và xyz = 240
=> 5k . 2k . 3k = 240
=> k3 . 30 = 240
=> k3 = 8
=> k = 2
\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=2\Leftrightarrow x=10\\\frac{y}{2}=2\Leftrightarrow y=4\\\frac{z}{3}=2\Leftrightarrow x=6\end{cases}}\)
Vậy : x = 10; y = 4; z = 6
b) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{2}\Rightarrow\frac{x^2}{16}=\frac{y^2}{9}=\frac{z^2}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ,ta có :
\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{z^2}{4}=\frac{x^2-y^2-z^2}{16-9-4}=\frac{12}{3}=4\)
Suy ra :
\(\frac{x^2}{16}=4\Leftrightarrow x^2=64\Leftrightarrow x=\pm8\)
\(\frac{y^2}{9}=4\Leftrightarrow y^2=36\Leftrightarrow y=\pm6\)
\(\frac{z^2}{4}=4\Leftrightarrow z^2=16\Leftrightarrow z=\pm4\)
Vậy \(\hept{\begin{cases}x=8\\y=6\\z=4\end{cases}}\)hoặc \(\hept{\begin{cases}x=-8\\y=-6\\z=-4\end{cases}}\)
c) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x^2}{16}=\frac{y^2}{9}=\frac{z^2}{25}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+y^2+z^2}{16+9+25}=\frac{200}{50}=4\)
Suy ra :
\(\frac{x^2}{16}=4\Leftrightarrow x^2=64\Leftrightarrow x=\pm8\)
\(\frac{y^2}{9}=4\Leftrightarrow y^2=36\Leftrightarrow y=\pm6\)
\(\frac{z^2}{25}=4\Leftrightarrow z^2=100\Leftrightarrow z=\pm10\)
Vậy :\(\hept{\begin{cases}x=8\\y=6\\z=10\end{cases}}\)hoặc \(\hept{\begin{cases}x=-8\\y=-6\\z=-10\end{cases}}\)