Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu kiểu này xuất hiện mấy năm rồi mà không thấy ai làm :D
\(\dfrac{7x-3y+12}{2y}=\dfrac{y+2z}{z-3y+2}=\dfrac{x}{-y}=\dfrac{7x}{-7y}=\dfrac{12-3y}{9y}=\dfrac{4-y}{3y}=\dfrac{2z+4}{z+2}=2\)
Phân thức thứ 5 trong dãy xuất hiện bằng cách thực hiện phép trừ tử - mẫu tương ứng của phân thức thứ 1 cho phân thức thứ 4.
Phân thức thứ 7 là kết quả của phép cộng tương ứng tử mẫu phân thức thứ 2 và thứ 6
\(\Rightarrow\dfrac{4-y}{3y}=2\Rightarrow4-y=6y\Rightarrow7y=4\Rightarrow y=\dfrac{4}{7}\)
\(\dfrac{x}{-y}=2\Rightarrow x=-2y\Rightarrow x=-2.\dfrac{4}{7}=\dfrac{-8}{7}\)
\(\dfrac{y+2z}{z-3y+2}=\dfrac{2z+\dfrac{4}{7}}{z-\dfrac{12}{7}+2}=\dfrac{2z+\dfrac{4}{7}}{z+\dfrac{2}{7}}=2\Rightarrow\) luôn đúng \(\forall z\ne\dfrac{-2}{7}\)
Vậy ta có \(x=\dfrac{-8}{7};y=\dfrac{4}{7};z\ne\dfrac{-2}{7}\)
Cho em hỏi vì sao 12-3y/9y lại bằng biểu thức trên đc ko ạ?
Cảm ơn @Nguyễn Việt Lâm
1/ Ta có xy=-6
Với x=-6 => y=1
x=-3 => y=2
x= -2 => y=3
x=-1 => y=6
2/ Ta có x=y+4
Thay x=y+4 vào bt, ta được
<=> y+4-3/y-2 =3/2
<=> y+1/y-2=3/2
<=> 2(y+1)=3(y-2)
<=> 2y +2 = 3y - 6
<=> 3y - 2y= 2+ 6
<=> y= 8 <=> x= 12
3/ -4/8 = x/-10 <=> x= (-4)*(-10)/8=5
-4/8 = -7/y <=> y=(-7)*8/(-4) =14
-4/8 = z/-24 <=> z= (-4)*(-24)/8=12
a.
$7x-2y=5x-3y$
$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:
$-y+3y=20$
$2y=20$
$\Rightarrow y=10$.
$x=\frac{-y}{2}=\frac{-10}{2}=-5$
b.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$
$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$
7x−3y+122y=y+2zz−3y+2=x−y=7x−7y=12−3y9y=4−y3y=2z+4z+2=27x−3y+122y=y+2zz−3y+2=x−y=7x−7y=12−3y9y=4−y3y=2z+4z+2=2
Phân thức thứ 5 trong dãy xuất hiện bằng cách thực hiện phép trừ tử - mẫu tương ứng của phân thức thứ 1 cho phân thức thứ 4.
Phân thức thứ 7 là kết quả của phép cộng tương ứng tử mẫu phân thức thứ 2 và thứ 6
⇒4−y3y=2⇒4−y=6y⇒7y=4⇒y=47⇒4−y3y=2⇒4−y=6y⇒7y=4⇒y=47
x−y=2⇒x=−2y⇒x=−2.47=−87x−y=2⇒x=−2y⇒x=−2.47=−87
y+2zz−3y+2=2z+47z−127+2=2z+47z+27=2⇒y+2zz−3y+2=2z+47z−127+2=2z+47z+27=2⇒ luôn đúng ∀z≠−27∀z≠−27
Vậy ta có x=−87;y=47;z≠−27x=−87;y=47;z≠−27
7x−3y+12
2y=y+2zz−3y+2=x−y=7x−7y=12−3y9y=4−y3y=2z+4z+2=27x−3y+122y=y+2zz−3y+2=x−y=7x−7y=12−3y9y=4−y3y=2z+4z+2=2
Phân thức thứ 5 trong dãy xuất hiện bằng cách thực hiện phép trừ tử - mẫu tương ứng của phân thức thứ 1 cho phân thức thứ 4.
Phân thức thứ 7 là kết quả của phép cộng tương ứng tử mẫu phân thức thứ 2 và thứ 6
⇒4−y3y=2⇒4−y=6y⇒7y=4⇒y=47⇒4−y3y=2⇒4−y=6y⇒7y=4⇒y=47
x−y=2⇒x=−2y⇒x=−2.47=−87x−y=2⇒x=−2y⇒x=−2.47=−87
y+2zz−3y+2=2z+47z−127+2=2z+47z+27=2⇒y+2zz−3y+2=2z+47z−127+2=2z+47z+27=2⇒ luôn đúng ∀z≠−27∀z≠−27
Vậy ta có x=−87;y=47;z≠−27x=−87;y=47;z≠−27