Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: 3(x-1)=2(y+2)
Ta có: 3(x-1)=2(y+2)
\(\Leftrightarrow6\left(x-1\right)=4\left(y+2\right)\)
mà 4(y+2)=5(z-3)
nên \(6\left(x-1\right)=4\left(y+2\right)=5\left(z-3\right)\)
\(\Leftrightarrow\dfrac{x-1}{\dfrac{1}{6}}=\dfrac{y+2}{\dfrac{1}{4}}=\dfrac{z-3}{\dfrac{1}{5}}\)
\(\Leftrightarrow\dfrac{2x-2}{\dfrac{1}{3}}=\dfrac{3y+6}{\dfrac{3}{4}}=\dfrac{4z-12}{\dfrac{4}{5}}\)
mà 2x+3y-4z=205
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x-2}{\dfrac{1}{3}}=\dfrac{3y+6}{\dfrac{3}{4}}=\dfrac{4z-12}{\dfrac{4}{5}}=\dfrac{2x-2+3y+6-4z+12}{\dfrac{1}{3}+\dfrac{3}{4}-\dfrac{4}{5}}=\dfrac{205+16}{\dfrac{17}{60}}=780\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{2x-2}{\dfrac{1}{3}}=780\\\dfrac{3y+6}{\dfrac{3}{4}}=780\\\dfrac{4z-12}{\dfrac{4}{5}}=780\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-2=260\\3y+6=585\\4z-12=624\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=262\\3y=579\\4z=636\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=131\\y=193\\z=159\end{matrix}\right.\)
Vậy: (x,y,z)=(131;193;159)
a, x/3 = y/-4 = z/-5
=> 2x/6 = 3y/-12 = 4z/-20
theo đề bài áp dụng tính chất của dãy tỉ số bằng nhau ta có :
2x/6 = 3y/-12 = 4z/-20 = 2x + 3y - 4z/6 + (-12) - (20) = 70/14 = 5
=> x = 5.3 = 15
y = 5.(-4) = -20
z = 5.(-5) = -25
Từ 2x=3y=4z
=>\(\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)
=>\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Theo TCDTSBN:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{6+4+3}=\frac{26}{13}=2\)
Vì x/6=2=>x=12
y/4=2=>y=8
z/3=2=>z=6
Vậy.......................
\(\frac{4}{x}=\frac{7}{y}=\frac{12}{z}=>\frac{8}{2x}=\frac{21}{3y}=\frac{48}{4z}=\frac{8+21+48}{1925}=\frac{77}{1925}=\frac{1}{25}\)
=>4/x=1/25=>x=100
=>7/y=1/25=>y=175
=>12/z=1/25=>z=300
\(\hept{\begin{cases}4x-3z=z\\6y-x=z\\2x+3y+4z=19\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=z\\6y-x=z\\2x+3y+4z=19\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=z\\3y=z=x\\2x+3y+4z=19\end{cases}}\)
\(\Leftrightarrow\)2x+x+4x=19 \(\Leftrightarrow\)x=z = \(\frac{19}{7}\)
y=\(\frac{19}{21}\)
x= \(\frac{19}{7}\)
y= \(\frac{19}{21}\)
z= \(\frac{19}{7}\)