Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Ta có: }\)
\(x=4y=\frac{z-9}{125}=\frac{x+y+z-9}{1+0,25+125}=\frac{2029-9}{126,25}=\frac{2020}{126,25}=16\)
=>x=16
=>4y=16 Vậy y=4
=>z-9/125=16 Vậy z=2009
\(\text{Đặt x=4y}=\frac{z-9}{125}=k\)
\(\Leftrightarrow\hept{\begin{cases}x=k\\y=\frac{1}{4}k\\z=125k+9\end{cases}}\)
\(\Rightarrow\frac{505}{4}k=2029\)
\(\text{Mà x+y+z=2029}\)
\(\Rightarrow k+\frac{1}{4}k+125k+9=2029\)
\(\Rightarrow\frac{505}{4}k=2020\Rightarrow k=16\)
\(\Rightarrow\hept{\begin{cases}x=16\\y=4\\z=2009\end{cases}}\)
b: 2x^3-1=15
=>2x^3=16
=>x=2
\(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)
=>\(\dfrac{y-25}{16}=\dfrac{z+9}{25}=\dfrac{18}{9}=2\)
=>y-25=32; z+9=50
=>y=57; z=41
d: 3/5x=2/3y
=>9x=10y
=>x/10=y/9=k
=>x=10k; y=9k
x^2-y^2=38
=>100k^2-81k^2=38
=>19k^2=38
=>k^2=2
TH1: k=căn 2
=>\(x=10\sqrt{2};y=9\sqrt{2}\)
TH2: k=-căn 2
=>\(x=-10\sqrt{2};y=-9\sqrt{2}\)
a) Ta có: \(6x=4y=3z\Rightarrow\dfrac{6x}{12}=\dfrac{4y}{12}=\dfrac{3z}{12}\Rightarrow\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}=\dfrac{x+2y-3z}{2+6-12}=\dfrac{-2}{-4}=\dfrac{1}{2}.\)
Với: \(\dfrac{x}{2}=\dfrac{1}{2}\Rightarrow x=1.\)
\(\dfrac{2y}{6}=\dfrac{y}{3}=\dfrac{1}{2}\Rightarrow y=\dfrac{1}{2}.3=\dfrac{3}{2}.\)
\(\dfrac{3z}{12}=\dfrac{z}{4}=\dfrac{1}{2}\Rightarrow z=\dfrac{1}{2}.4=\dfrac{4}{2}=2.\)
Vậy: \(x=1;y=\dfrac{3}{2};z=2.\)
\(a,\dfrac{x+1}{3}=\dfrac{y+2}{2}=\dfrac{z+9}{1}\)
Áp dụng t.c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x+1}{3}=\dfrac{y+2}{2}=\dfrac{z+9}{1}=\dfrac{x-y-z+1-2-9}{3-2-1}=\dfrac{22-10}{0}\left(loại\right)\)
Vậy \(x;y;z\in\varnothing\)
\(\dfrac{6}{11}x=\dfrac{9}{2}y=\dfrac{18}{5}z\)
\(\Leftrightarrow\dfrac{x}{\dfrac{11}{6}}=\dfrac{y}{\dfrac{2}{9}}=\dfrac{z}{\dfrac{5}{18}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{\dfrac{11}{6}}=\dfrac{y}{\dfrac{2}{9}}=\dfrac{z}{\dfrac{5}{18}}=\dfrac{x+y+z}{\dfrac{11}{6}+\dfrac{2}{9}+\dfrac{5}{18}}=\dfrac{-196}{\dfrac{42}{18}}=\dfrac{-98}{\dfrac{21}{18}}=\dfrac{-588}{7}\)
(thấy lẻ,nếu đề ko sai thì làm tiếp)
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
\(\Rightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
\(=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=0\)
\(\Rightarrow\left\{{}\begin{matrix}3x=2y\\2z=4x\\4y=3z\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{x}{2}=\dfrac{z}{4}\\\dfrac{y}{3}=\dfrac{z}{4}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y-z}{2+3-4}=\dfrac{-10}{1}=-10\)
\(\Rightarrow\left\{{}\begin{matrix}x=-10.2=-20\\y=-10.3=-30\\z=-10.4=-40\end{matrix}\right.\)
Vậy......
Giải:
Đặt \(x=4y=\dfrac{z-9}{125}=k\Rightarrow\left\{{}\begin{matrix}x=k\\y=\dfrac{1}{4}k\\z=125k+9\end{matrix}\right.\)
Mà \(x+y+z=2029\)
\(\Rightarrow k+\dfrac{1}{4}k+125k+9=2029\)
\(\Rightarrow\dfrac{505}{4}k=2020\)
\(\Rightarrow k=16\)
\(\Rightarrow\left\{{}\begin{matrix}x=16\\y=4\\z=2009\end{matrix}\right.\)
Vậy \(x=16;y=4;z=2009\)