\(^{^{ }x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=6...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2019

Áp dụng bđt Cô si 

x2+\(\frac{1}{x^2}\)\(\ge\)2\(\sqrt{x^2.\frac{1}{x^2}}\)=2

y2+\(\frac{1}{y^2}\)\(\ge\)2\(\sqrt{y^2.\frac{1}{y^2}}\)=2

z2+\(\frac{1}{z^2}\)\(\ge\)2\(\sqrt{z^2.\frac{1}{z^2}}\)=2

=>x2+\(\frac{1}{x^2}\)+y2+\(\frac{1}{y^2}\)+z2+\(\frac{1}{z^2}\)\(\ge\)6

dấu bằng xảy ra <=>x=y=z=1
 
 
23 tháng 11 2019

Áp dụng BĐT \(\frac{a}{b}+\frac{b}{a}\ge2\)(Dấu "="\(\Leftrightarrow a=b\ne0\))

\(x^2+\frac{1}{x^2}\ge2\)

\(y^2+\frac{1}{y^2}\ge2\)

\(z^2+\frac{1}{z^2}\ge2\)

\(\Rightarrow x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge6\)

(Dấu "="\(\Leftrightarrow\orbr{\begin{cases}x=y=z=1\\x=y=z=-1\end{cases}}\))

12 tháng 8 2016

\(1,\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}=\frac{x^2+y^2+z^2}{5}=\frac{x^2}{5}+\frac{y^2}{5}+\frac{z^2}{5}\)

\(=>\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}-\left(\frac{x^2}{5}+\frac{y^2}{5}+\frac{z^2}{5}\right)=0\)

\(=>\left(\frac{x^2}{2}-\frac{x^2}{5}\right)+\left(\frac{y^2}{3}-\frac{y^2}{5}\right)+\left(\frac{z^2}{4}-\frac{z^2}{5}\right)=0\)

\(=>\left(\frac{5x^2}{10}-\frac{2x^2}{10}\right)+\left(\frac{5y^2}{15}-\frac{3y^2}{15}\right)+\left(\frac{5z^2}{20}-\frac{4z^2}{20}\right)=0\)

\(=>\frac{3}{10}x^2+\frac{2}{15}y^2+\frac{1}{20}z^2=0\)

Tổng 3 số không âm=0 <=> chúng đều=0

\(< =>\frac{3}{10}x^2=\frac{2}{15}y^2=\frac{1}{20}z^2=0< =>x=y=z=0\)

Vậy x=y=z=0

\(2,x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\)

\(=>x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}-4=0\)

\(=>\left(x^2+\frac{1}{x^2}-2\right)+\left(y^2+\frac{1}{y^2}-2\right)=0\)

\(=>\left(x^2-2+\frac{1}{x^2}\right)+\left(y^2-2+\frac{1}{y^2}\right)=0\)

\(=>\left(x^2-2.x.\frac{1}{x}+\frac{1}{x^2}\right)+\left(y^2-2.y.\frac{1}{y}+\frac{1}{y^2}\right)=0\)

\(=>\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=0\)

Tổng 2 số không âm=0 <=> chúng đều=0

\(< =>\hept{\begin{cases}x-\frac{1}{x}=0\\y-\frac{1}{y}=0\end{cases}< =>\hept{\begin{cases}x=\frac{1}{x}\\y=\frac{1}{y}\end{cases}< =>\hept{\begin{cases}x^2=1\\y^2=1\end{cases}}}}\)\(< =>\hept{\begin{cases}x\in\left\{-1;1\right\}\\y\in\left\{-1;1\right\}\end{cases}}\)

Vậy có 4 cặp (x;y) cần tìm là (1;1) ;(1;-1);(-1;1);(-1;-1)

15 tháng 8 2016

cảm ơn bạn Hoàng Phúc

25 tháng 12 2016

\(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=1\)

=>\(\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)=x+y+z\)

<=>\(\frac{x^2}{y+z}+\frac{xy}{y+z}+\frac{xz}{y+z}+\frac{xy}{x+z}+\frac{y^2}{x+z}+\frac{yz}{x+z}+\frac{xz}{x+y}+\frac{yz}{x+y}+\frac{z^2}{x+y}=1\)

<=>\(\frac{x^2}{y+z}+\frac{xy+xz}{y+z}+\frac{y^2}{x+z}+\frac{xy+yz}{x+z}+\frac{z^2}{x+y}+\frac{xz+yz}{x+y}=x+y+z\)

<=>\(\frac{x^2}{y+z}+\frac{x\left(y+z\right)}{y+z}+\frac{y^2}{x+z}+\frac{y\left(x+z\right)}{x+z}+\frac{z^2}{x+y}+\frac{z\left(x+y\right)}{x+y}=x+y+z\)

<=>\(\frac{x^2}{y+z}+x+\frac{y^2}{x+z}+y+\frac{z^2}{x+y}+z=x+y+z\)

<=>\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=0\)

30 tháng 12 2016

=0 đó tớ thi rồi.

15 tháng 7 2017

a/ \(\frac{x}{2}=\frac{y}{4}\)

\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{x^2+y^2}{20}=\frac{2000}{20}=100\)

\(\Rightarrow\orbr{\begin{cases}x=-20\\x=20\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}y=-40\\y=40\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}z=-50\\z=50\end{cases}}\)

15 tháng 7 2017

b/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-2y+3z-1+4-9}{2-6+12}=1\)

\(\Rightarrow\hept{\begin{cases}x=3\\y=5\\z=7\end{cases}}\)

17 tháng 1 2017

Lạ nhỉ mình trả lời rồi mà

ta có {nhân phân phối ra dẽ hơn} là ghép nhân tử

\(\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\left(x+y+z\right)=\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}....\right)+\left(x+y+z\right)\)

Chia hai vế cho (x+y+z khác 0) chú ý => dpcm

17 tháng 1 2017

quái lại câu 1 đâu 

(a+b+c)=abc tất nhiên theo đầu đk a,b,c khác không

chia hai vế cho abc/2

2/bc+2/ac+2/ab=2 (*)

đăt: 1/a=x; 1/b=y; 1/c=z

ta có

x+y+z=k (**)

x^2+y^2+z^2=k(***)

lấy (*)+(***),<=>(x+y+z)^2=2+k

=> k^2=2+k

=> k^2-k=2 

k^2-k+1/4=1/4+2=9/4

\(\orbr{\begin{cases}k=\frac{1}{2}+\frac{3}{2}=\frac{5}{2}\\k=\frac{1}{2}-\frac{3}{2}=-\frac{1}{2}\end{cases}}\)

Mình chưa test lại đâu bạn tự test nhé

20 tháng 4 2017

bài 1 ta có x+y+z=0 suy ra y+z=-x 

(-x)2=x2=(y+z)2=y2+2yz+z2

suy ra 

\(\frac{1}{y^2+z^2-x^2}=\frac{1}{-2yz}\)

tương tự ta có \(\frac{1}{-2yz}+\frac{1}{-2xy}+\frac{1}{-2xz}=\frac{-1}{2}\left(\frac{x+z+y}{xyz}\right)=\frac{-1}{2}\left(\frac{0}{xyz}\right)\)

bài 2 bạn ghi đề không rõ ràng nên mình không giải

21 tháng 4 2017

Tại sao lại \(\frac{1}{y^2+z^2-x^2}\)=\(\frac{1}{-2yz}\)

1 tháng 3 2018

b, Gọi biểu thức đề ra là B

=> Theo bđt cô si ta có : \(B\ge3\sqrt[3]{\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{z^2}\right)\left(z^2+\frac{1}{x^2}\right)}\)

=> \(B\ge3\sqrt[3]{2\cdot\frac{x}{y}\cdot2\cdot\frac{y}{z}\cdot2\cdot\frac{z}{x}}=3\sqrt[3]{8}=6\) 

( Chỗ này là thay \(x^2+\frac{1}{y^2}\ge2\sqrt{\frac{x^2}{y^2}}=2\cdot\frac{x}{y}\) và 2 cái kia tương tự vào )

=> Min B=6

1 tháng 3 2018

Theo bđt cô si thì ta có : \(\sqrt{\left(x+y\right)\cdot1}\le\frac{x+y+1}{2}\)

\(\sqrt{\left(z+x\right)\cdot1}\le\frac{z+x+1}{2}\)

\(\sqrt{\left(y+z\right)\cdot1}\le\frac{y+z+1}{2}\)

=> Cộng vế theo vế ta được : \(A\le\frac{2\left(x+y+z\right)+3}{2}=\frac{5}{2}\)

Dấu = xảy ra khi : x+y+z=1 và x+y=1 và y+z=1 và x+z=1

=> \(x=y=z=\frac{1}{3}\)

Vậy ...